ﻻ يوجد ملخص باللغة العربية
The London penetration depth, $lambda(T)$, has been measured in several single crystals of Ba(Fe$_{0.93}$Co$_{0.07}$)$_2$As$_2$. Thermodynamic, electromagnetic, and structural characterization measurements confirm that these crystals are of excellent quality. The observed low temperature variation of $lambda(T)$ follows a power-law, $Delta lambda (T) sim T^n$ with $n=2.4 pm 0.1$, indicating the existence of normal quasiparticles down to at least $0.02T_c$. This is in contrast to recent penetration depth measurements on single crystals of NdFeAsO$_{1-x}$F$_x$ and SmFeAsO$_{1-x}$F$_x$, which indicate an anisotropic but nodeless gap. We propose that a more three-dimensional character in the electronic structure of Ba(Fe$_{0.93}$Co$_{0.07}$)$_2$As$_2$ may lead to an anisotropic $s-$wave gap with point nodes that would explain the observed $lambda(T)$.
We present small-angle neutron scattering (SANS) and Bitter decoration studies of the superconducting vortices in Ba(Fe$_{0.93}$Co$_{0.07}$)$_2$As$_2$}. A highly disordered vortex configuration is observed at all measured fields, and is attributed to
In- and out-of-plane magnetic penetration depths were measured in three iron-based pnictide superconducting systems. All studied samples of both 122 systems show a robust power-law behavior, $lambda (T) T^n$, with the sample-dependent exponent n=2-2.
The superconducting penetration depth, $lambda(T)$, has been measured in RFeAsO$_{0.9}$F$_{0.1}$ (R=La,Nd) single crystals (R-1111). In Nd-1111, we find an upturn in $lambda(T)$ upon cooling and attribute it to the paramagnetism of the Nd ions, simil
The temperature dependence of the in-plane, lambda_{parallel}, and interplane, lambda_{perp}, London penetration depth was measured in the metal-free all-organic superconductor beta-ET (see title) ($T_c approx$ 5.2 K). lambda_{parallel} ~T^3 up to 0.
The London penetration depth $lambda$ is the basic length scale for electromagnetic behavior in a superconductor. Precise measurements of $lambda$ as a function of temperature, field, and impurity scattering have been instrumental in revealing the na