Fix a manifold M, and let V be an infinite dimensional Lie algebra of vector fields on M. Assume that V contains a finite dimensional semisimple maximal subalgebra A, the projective or conformal subalgebra. A projective or conformal quantization of a V-module of differential operators on M is a decomposition into irreducible A-modules. We survey recent results on projective quantizations and their applications to cohomology, geometric equivalences and symmetries of differential operator modules, and indecomposable modules.