ﻻ يوجد ملخص باللغة العربية
The study of abrupt increases in magnetization with magnetic field known as metamagnetic transitions has opened a rich vein of new physics in itinerant electron systems, including the discovery of quantum critical end points with a marked propensity to develop new kinds of order. However, the electric analogue of the metamagnetic critical end point, a metaelectric critical end point has not yet been realized. Multiferroic materials wherein magnetism and ferroelectricity are cross-coupled are ideal candidates for the exploration of this novel possibility using magnetic-field (emph{H}) as a tuning parameter. Herein, we report the discovery of a magnetic-field-induced metaelectric transition in multiferroic BiMn$_{2}$O$_{5}$ in which the electric polarization (emph{P}) switches polarity along with a concomitant Mn spin-flop transition at a critical magnetic field emph{H}$_{rm c}$. The simultaneous metaelectric and spin-flop transitions become sharper upon cooling, but remain a continuous crossover even down to 0.5 K. Near the emph{P}=0 line realized at $mu_{0}$emph{H}$_{rm c}$$approx$18 T below 20 K, the dielectric constant ($varepsilon$) increases significantly over wide field- and temperature (emph{T})-ranges. Furthermore, a characteristic power-law behavior is found in the emph{P}(emph{H}) and $varepsilon$(emph{H}) curves at emph{T}=0.66 K. These findings indicate that a magnetic-field-induced metaelectric critical end point is realized in BiMn$_2$O$_5$ near zero temperature.
The electric polarization and its magnetic origins in multiferroic RMn2O5, where R is rare-earth ion, are still issues under debate. In this work, the temperature-dependent electric polarization of DyMn2O5, the most attractive member of this RMn2O5 f
The electrocaloric effect (ECE), i.e., the reversible temperature change due to the adiabatic variation of the electric field, is of great interest due to its potential technological applications. Based on entropy arguments, we present a new framewor
InMnO$_3$ is a peculiar member of the hexagonal manganites h-RMnO$_3$ (where R is a rare earth metal element), showing crystalline, electronic and magnetic properties at variance with the other compounds of the family. We have studied high quality sa
We examine the electronic properties of newly discovered ferroelectric metal LiOsO$_3$ combining density-functional and dynamical mean-field theories. We show that the material is close to a Mott transition and that electronic correlations can be tun
Some of the Multiferroics [1] form a rare class of materials that exhibit magnetoelectric coupling arising from the coexistence of ferromagnetism and ferroelectricity, with potential for many technological applications.[2,3] Over the last decade, an