ﻻ يوجد ملخص باللغة العربية
A theory of photoinduced directed bending of non-crystalline molecular films is presented. Our approach is based on elastic deformation of the film due to interaction between molecules ordered through polarized light irradiation. The shape of illuminated film is obtained in the frame of the nonlinear elasticity theory. It is shown that the shape and the curvature of the film depend on the polarization and intensity of the light. The curvature of an irradiated film is a non-monotonic function of the extinction coefficient.
Manipulation of the magnetization by external energies other than magnetic field, such as spin-polarized current1-4, electric voltage5,6 and circularly polarized light7-11 gives a paradigm shift in magnetic nanodevices. Magnetization control of ferro
An equilibrium phase diagram for the shape of compressively strained free-hanging films is developed by total strain energy minimization. For small strain gradients {Delta}{epsilon}, the film wrinkles, while for sufficiently large {Delta}{epsilon}, a
Superconducting thin films of magnesium diboride (MgB$_2$) were prepared on MgO (001) substrate by a molecular beam epitaxy (MBE) method with the co-evaporation conditions of low deposition rate in ultra-high vacuum. The structural and physical prope
Gray tin, also known as {alpha}-Sn, has been attracting research interest recent years due to its topological nontrivial properties predicted theoretically. The Dirac linear band dispersion has been proved experimentally by angle resolved photoemissi
We report on the results of a molecular dynamics simulation study of binodal glassy systems, formed in the process of isochoric rapid quenching from a high-temperature fluid phase. The transition to vitreous state occurs due to concurrent spinodal de