ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomic jets from class 0 sources detected by Spitzer: the case of L1448-C

382   0   0.0 ( 0 )
 نشر من قبل Brunella Nisini
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Spitzer-IRS spectra obtained along the molecular jet from the Class 0 source L1448-C (or L1448-mm). Atomic lines from the fundamental transitions of [FeII], [SiII] and [SI] have been detected showing, for the first time, the presence of an embedded atomic jet at low excitation. Pure rotational H$_2$ lines are also detected, and a decrease of the atomic/molecular emission ratio is observed within 1 arcmin from the driving source. Additional ground based spectra (UKIRT/UIST) were obtained to further constrain the H$_2$ excitation along the jet axis and, combined with the 0--0 lines, have been compared with bow-shock models. From the different line ratios, we find that the atomic gas is characterized by an electron density n_e ~ 200-1000 cm^{-3}, a temperature T_e < 2500 K and an ionization fraction <~ 10^{-2}; the excitation conditions of the atomic jet are thus very different from those found in more evolved Class I and Class II jets. We also infer that only a fraction (0.05-0.2) of Fe and Si is in gaseous form, indicating that dust still plays a major role in the depletion of refractory elements. A comparison with the SiO abundance recently derived in the jet from an analysis of several SiO sub-mm transitions, shows that the Si/SiO abundance ratio is ~100, and thus that most of the silicon released from grains by sputtering and grain-grain collisions remains in atomic form. Finally, estimates of the atomic and molecular mass flux rates have been derived: values of the order of ~10$^{-6}$ and ~10$^{-7}$ M$_{sun}$ yr$^{-1}$ are inferred from the [SI]25$mu$m and H$_2$ line luminosities, respectively. A comparison with the momentum flux of the CO molecular outflow suggests that the detected atomic jet has the power to drive the large scale outflow.



قيم البحث

اقرأ أيضاً

We present Herschel PACS mapping observations of the [OI]63 micron line towards protostellar outflows in the L1448, NGC1333-IRAS4, HH46, BHR71 and VLA1623 star forming regions. We detect emission spatially resolved along the outflow direction, which can be associated with a low excitation atomic jet. In the L1448-C, HH46 IRS and BHR71 IRS1 outflows this emission is kinematically resolved into blue- and red-shifted jet lobes, having radial velocities up to 200 km/s. In the L1448-C atomic jet the velocity increases with the distance from the protostar, similarly to what observed in the SiO jet associated with this source. This suggests that [OI] and molecular gas are kinematically connected and that this latter could represent the colder cocoon of a jet at higher excitation. Mass flux rates (.M$_{jet}$(OI)) have been measured from the [OI]63micron luminosity adopting two independent methods. We find values in the range 1-4 10$^{-7}$ Mo/yr for all sources but HH46, for which an order of magnitude higher value is estimated. .M$_{jet}$(OI) are compared with mass accretion rates (.M$_{acc}$) onto the protostar and with .M$_{jet}$ derived from ground-based CO observations. .M$_{jet}$(OI)/.M$_{acc}$ ratios are in the range 0.05-0.5, similar to the values for more evolved sources. .M$_{jet}$(OI) in HH46 IRS and IRAS4A are comparable to .M$_{jet}$(CO), while those of the remaining sources are significantly lower than the corresponding .M$_{jet}$(CO). We speculate that for these three sources most of the mass flux is carried out by a molecular jet, while the warm atomic gas does not significantly contribute to the dynamics of the system.
78 - M. Rengel 2003
Class 0 sources are objects representing the earliest phase of the protostellar evolution. Since they are highly obscured by an extended dusty envelope, these objects emit mainly in the far-infrared to millimetre wavelength range. The analysis of the ir spectral energy distributions with wide wavelength coverage allows to determine the bolometric temperature and luminosity. However, a more detailed physical interpretation of the internal physical structure of these objects requires radiative transfer modelling. We present modelling results of spectral energy distributions of a sample of nine Class 0 sources in the Perseus and Orion molecular clouds. The SEDs have been simulated using a radiative transfer code based on the Monte Carlo method. We find that a spherically symmetric model for the youngest Class 0 sources allows to reproduce the observed SEDs reasonably well. From our modelling we derive physical parameters of our sources, such as their mass, density distribution, size, etc. We find a density structure of $rho sim r^{-2}$ for the collapsing cores at young ages, evolving to $rho sim r^{-3/2}$ at later times.
77 - L. Podio , B. Tabone , C. Codella 2020
As a part of the CALYPSO large programme, we constrain the properties of protostellar jets and outflows in a sample of 21 Class 0 protostars with internal luminosities, Lint, from 0.035 to 47 Lsun. We analyse high angular resolution (~0.5-1) IRAM PdB I observations in CO (2-1), SO ($5_6-4_5$), and SiO (5-4). CO (2-1), which probes outflowing gas, is detected in all the sources (for the first time in SerpS-MM22 and SerpS-MM18b). Collimated high-velocity jets in SiO (5-4) are detected in 67% of the sources (for the first time in IRAS4B2, IRAS4B1, L1448-NB, SerpS-MM18a), and 77% of these also show jet/outflow emission in SO ($5_6-4_5$). In 5 sources (24% of the sample) SO ($5_6-4_5$) probes the inner envelope and/or the disk. The CALYPSO survey shows that the outflow phenomenon is ubiquitous and that the detection rate of high-velocity jets increases with protostellar accretion, with at least 80% of the sources with Lint>1 Lsun driving a jet. The protostellar flows exhibit an onion-like structure, where the SiO jet (opening angle ~10$^o$) is nested into a wider angle SO (~15$^o$) and CO (~25$^o$) outflow. On scales >300 au the SiO jets are less collimated than atomic jets from Class II sources (~3$^o$). Velocity asymmetry between the two jet lobes are detected in one third of the sources, similarly to Class II atomic jets, suggesting that the same launching mechanism is at work. Most of the jets are SiO rich (SiO/H2 from >2.4e-7 to >5e-6), which indicates efficient release of >1%-10% of silicon in gas phase likely in dust-free winds, launched from inside the dust sublimation radius. The mass-loss rates (from ~7e-8 to ~3e-6 Msun/yr) are larger than what was measured for Class II jets. Similarly to Class II sources, the mass-loss rates are ~1%-50% of the mass accretion rates suggesting that the correlation between ejection and accretion in young stars holds from 1e4 yr up to a few Myr.
Low mass star-forming regions are more complex than the simple spherically symmetric approximation that is often assumed. We apply a more realistic infall/outflow physical model to molecular/continuum observations of three late Class 0 protostellar s ources with the aims of (a) proving the applicability of a single physical model for all three sources, and (b) deriving physical parameters for the molecular gas component in each of the sources. We have observed several molecular species in multiple rotational transitions. The observed line profiles were modelled in the context of a dynamical model which incorporates infall and bipolar outflows, using a three dimensional radiative transfer code. This results in constraints on the physical parameters and chemical abundances in each source. Self-consistent fits to each source are obtained. We constrain the characteristics of the molecular gas in the envelopes as well as in the molecular outflows. We find that the molecular gas abundances in the infalling envelope are reduced, presumably due to freeze-out, whilst the abundances in the molecular outflows are enhanced, presumably due to dynamical activity. Despite the fact that the line profiles show significant source-to-source variation, which primarily derives from variations in the outflow viewing angle, the physical parameters of the gas are found to be similar in each core.
Protostellar jets are present in the later stages of the stellar formation. Non-thermal radio emission has been detected from the jets and hot spots of some massive protostars, indicating the presence of relativistic electrons there. We are intereste d in exploring if these non-thermal particles can emit also at gamma-rays. In the present contribution we model the non-thermal emission produced in the jets associated with the massive protostar IRAS 18162-2048. We obtain that the gamma-ray emission produced in this source is detectable by the current facilities in the GeV domain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا