ﻻ يوجد ملخص باللغة العربية
Given a symplectic three-fold $(M,omega)$ we show that for a generic almost complex structure $J$ which is compatible with $omega$, there are finitely many $J$-holomorphic curves in $M$ of any genus $ggeq 0$ representing a homology class $beta$ in $H_2(M,Z)$ with $c_1(M).beta=0$, provided that the divisibility of $beta$ is at most 4 (i.e. if $beta=nalpha$ with $alphain H_2(M,Z)$ and $nin Z$ then $nleq 4$). Moreover, each such curve is embedded and 4-rigid.
This paper has been withdrawn by the author, due a crucial mistake in proof of lemma 4.2.
We classify four-dimensional manifolds endowed with symplectic pairs admitting embedded symplectic spheres with non-negative self-intersection, following the strategy of McDuffs classification of rational and ruled symplectic four manifolds.
We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact groups. By using a degeneration based on the Vinberg monoid we give, in good cases, a global quotient description of a surgery construction introduced by Woodward and Meinre
We give characterizations of a finite group $G$ acting symplectically on a rational surface ($mathbb{C}P^2$ blown up at two or more points). In particular, we obtain a symplectic version of the dichotomy of $G$-conic bundles versus $G$-del Pezzo surf
We prove that the open Gromov-Witten invariants on K3 surfaces satisfy the Kontsevich-Soibelman wall-crossing formula. One one hand, this gives a geometric interpretation of the slab functions in Gross-Siebert program. On the other hands, the open Gr