ﻻ يوجد ملخص باللغة العربية
In this note, we study the curvature flow to Nirenberg problem on $S^2$ with non-negative nonlinearity. This flow was introduced by Brendle and Struwe. Our result is that the Nirenberg problems has a solution provided the prescribed non-negative Gaussian curvature $f$ has its positive part, which possesses non-degenerate critical points such that $Delta_{S^2} f>0$ at the saddle points.
We prove some non-existence theorems for translating solutions to Lagrangian mean curvature flow. More precisely, we show that translating solutions with an $L^2$ bound on the mean curvature are planes and that almost-calibrated translating solutions
We continue studying a parabolic flow of almost K{a}hler structures introduced by Streets and Tian which naturally extends K{a}hler-Ricci flow onto symplectic manifolds. In the system of primarily the symplectic form, almost complex structure, Chern
We prove the mean curvature flow of a spacelike graph in $(Sigma_1times Sigma_2, g_1-g_2)$ of a map $f:Sigma_1to Sigma_2$ from a closed Riemannian manifold $(Sigma_1,g_1)$ with $Ricci_1> 0$ to a complete Riemannian manifold $(Sigma_2,g_2)$ with bound
In this note, we study Q-curvature flow on $S^4$ with indefinite nonlinearity. Our result is that the prescribed Q-curvature problem on $S^4$ has a solution provided the prescribed Q-curvature $f$ has its positive part, which possesses non-degenerate
In the last 15 years, White and Huisken-Sinestrari developed a far-reaching structure theory for the mean curvature flow of mean convex hypersurfaces. Their papers provide a package of estimates and structural results that yield a precise description