ﻻ يوجد ملخص باللغة العربية
The so-called LSND anomaly, a 3.8 sigma excess of anti-nu_e events interpreted as originating from anti-nu_mu -> anti-nu_e oscillation, gave rise to many theoretical speculations. The MiniBooNE Collaboration reported inconsistency of this interpretation with the findings from their search for nu_mu -> nu_e oscillations. Yet the origin of the LSND anomaly was never clarified. A critical issue is the prediction of the background anti-nu_e flux that was used in the analysis of the LSND experiment. For this, decisive input comes from pion spectra measured with the HARP large-angle spectrometer under conditions that closely resemble the LSND situation: a proton beam with 800 MeV kinetic energy hitting a water target.
This paper, together with a subsequent paper, questions the so-called LSND anomaly: a 3.8 {sigma} excess of anti-electronneutrino interactions over standard backgrounds, observed by the LSND Collaboration in a beam dump experiment with 800 MeV proton
This paper, together with a preceding paper, questions the so-called LSND anomaly: a 3.8 sigma excess of antielectronneutrino interactions over standard backgrounds, observed by the LSND Collaboration in a beam dump experiment with 800 MeV protons. T
Hadron generation models are indispensable for the simulation and calibration of particle physics detectors. The models used by the Geant4 simulation tool kit are compared with inclusive spectra of secondary protons and pions from the interactions wi
We report an early result from the ICARUS experiment on the search for nu_mu to nu_e signal due to the LSND anomaly. The search was performed with the ICARUS T600 detector located at the Gran Sasso Laboratory, receiving CNGS neutrinos from CERN at an
We examine the exclusion limits set by the CDF and D0 experiments on the Standard Model Higgs boson mass from their searches at the Tevatron in the light of large theoretical uncertainties on the signal and background cross sections. We show that whe