ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical study of large-scale vorticity generation in shear-flow turbulence

246   0   0.0 ( 0 )
 نشر من قبل Petri K\\\"apyl\\\"a
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Petri J. Kapyla




اسأل ChatGPT حول البحث

Simulations of stochastically forced shear-flow turbulence in a shearing-periodic domain are used to study the spontaneous generation of large-scale flow patterns in the direction perpendicular to the plane of the shear. Based on an analysis of the resulting large-scale velocity correlations it is argued that the mechanism behind this phenomenon could be the mean-vorticity dynamo effect pioneered by Elperin, Kleeorin, and Rogachevskii in 2003 (Phys. Rev. E 68, 016311). This effect is based on the anisotropy of the eddy viscosity tensor. One of its components may be able to replenish cross-stream mean flows by acting upon the streamwise component of the mean flow. Shear, in turn, closes the loop by acting upon the cross-stream mean flow to produce stronger streamwise mean flows. The diagonal component of the eddy viscosity is found to be of the order of the rms turbulent velocity divided by the wavenumber of the energy-carrying eddies.



قيم البحث

اقرأ أيضاً

We discuss a mean-field theory of generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale nonuniform flow is produced due to ether a combined action o f a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.
We find an instability resulting in generation of large-scale vorticity in a fast rotating small-scale turbulence or turbulent convection with inhomogeneous fluid density along the rotational axis in anelastic approximation. The large-scale instabili ty causes excitation of two modes: (i) the mode with dominant vertical vorticity and with the mean velocity being independent of the vertical coordinate; (ii) the mode with dominant horizontal vorticity and with the mean momentum being independent of the vertical coordinate. The mode with the dominant vertical vorticity can be excited in a fast rotating density stratified hydrodynamic turbulence or turbulent convection. For this mode, the mean entropy is depleted inside the cyclonic vortices, while it is enhanced inside the anti-cyclonic vortices. The mode with the dominant horizontal vorticity can be excited only in a fast rotating density stratified turbulent convection. The developed theory may be relevant for explanation of an origin of large spots observed as immense storms in great planets, e.g., the Great Red Spot in Jupiter and large spots in Saturn. It may be also useful for explanation of an origin of high-latitude spots in rapidly rotating late-type stars.
Multiphase shear flows often show banded structures that affect the global behavior of complex fluids e.g. in microdevices. Here we investigate numerically the banding of emulsions, i.e. the formation of regions of high and low volume fraction, alter nated in the vorticity direction and aligned with the flow (shear bands). These bands are associated with a decrease of the effective viscosity of the system. To understand the mechanism of banding experimentally observed we have performed interface resolved simulations of the two-fluid system. The experiments were perfomed starting with a random distribution of droplets which, under the applied shear, evolves in time resulting in a phase separation. To numerically reproduce this process, the banded structures are initialized in a narrow channel confined by two walls moving in opposite direction. We find that the initial banded distribution is stable when droplets are free to merge and unstable when coalescence is prevented. In this case, additionally, the effective viscosity of the system increases, resembling the rheological behavior of suspensions of deformable particles. Droplets coalescence, on the other hand, allows emulsions to reduce the total surface of the system and hence the energy dissipation associated to the deformation, which in turn reduces the effective viscosity.
A linearly unstable, sinusoidal $E times B$ shear flow is examined in the gyrokinetic framework in both the linear and nonlinear regimes. In the linear regime, it is shown that the eigenmode spectrum is nearly identical to hydrodynamic shear flows, w ith a conjugate stable mode found at every unstable wavenumber. In the nonlinear regime, turbulent saturation of the instability is examined with and without the inclusion of a driving term that prevents nonlinear flattening of the mean flow, and a scale-independent radiative damping term that suppresses the excitation of conjugate stable modes. A simple fluid model for how momentum transport and partial flattening of the mean flow scale with the driving term is constructed, from which it is shown that, except at high radiative damping, stable modes play an important role in the turbulent state and yield significantly improved quantitative predictions when compared with corresponding models neglecting stable modes.
70 - A. Thion 2000
We explore the stability of the variance and skewness of the cosmic gravitational convergence field, using two different approaches: first we simulate a whole MEGACAM survey (100 sq. degrees). The reconstructed mass map, obtained from a shear map, sh ows that the state-of-the-art data analysis methods can measure weak-lensing statistics at angular scales ranging from 2.5 to 25. We looked also at the influence of a varying signal-to-noise ratio over the shear map (due to local variations of source density) on the mass reconstruction, by means of Monte-Carlo simulation. The effect at small scales can easily be corrected-for in most of the relevant cases. These results enhance the confidence in the capability of future large surveys to measure accurately cosmologically interesting quantities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا