ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Matter in the Galaxy Cluster CL J1226+3332 at Z=0.89

138   0   0.0 ( 0 )
 نشر من قبل Myungkook Jee
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a weak-lensing analysis of the galaxy cluster CL J1226+3332 at z=0.89 using Hubble Space Telescope Advanced Camera for Surveys images. The cluster is the hottest (>10 keV), most X-ray luminous system at z>0.6 known to date. The relaxed X-ray morphology, as well as its high temperature, is unusual at such a high redshift. Our mass reconstruction shows that on a large scale the dark matter distribution is consistent with a relaxed system with no significant substructures. However, on a small scale the cluster core is resolved into two mass clumps highly correlated with the cluster galaxy distribution. The dominant mass clump lies close to the brightest cluster galaxy whereas the other less massive clump is located ~40 (~310 kpc) to the southwest. Although this secondary mass clump does not show an excess in the X-ray surface brightness, the gas temperature of the region is much higher (12~18 keV) than those of the rest. We propose a scenario in which the less massive system has already passed through the main cluster and the X-ray gas has been stripped during this passage. The elongation of the X-ray peak toward the southwestern mass clump is also supportive of this possibility. We measure significant tangential shears out to the field boundary (~1.5 Mpc), which are well described by an Navarro-Frenk-White profile with a concentration parameter of c200=2.7+-0.3 and a scale length of rs=78+-19 (~600 kpc) with chi^2/d.o.f=1.11. Within the spherical volume r200=1.6 Mpc, the total mass of the cluster becomes M(r<r200)=(1.4+-0.2) x 10^15 solar mass. Our weak-lensing analysis confirms that CL1226+3332 is indeed the most massive cluster known to date at z>0.6.



قيم البحث

اقرأ أيضاً

95 - B. J. Maughan 2004
A detailed X-ray analysis of an XMM-Newton observation of the high-redshift (z=0.89) galaxy cluster ClJ1226.9+3332 is presented. The X-ray temperature is found to be 11.5{+1.1}{-0.9}keV, the highest X-ray temperature of any cluster at z>0.6. In contr ast to MS1054-0321, the only other very hot cluster currently known at z>0.8, ClJ1226.9+3332 features a relaxed X-ray morphology, and its high overall gas temperature is not caused by one or several hot spots. The system thus constitutes a unique example of a high redshift, high temperature, relaxed cluster, for which the usual hydrostatic equilibrium assumption, and the X-ray mass is most reliable. A temperature profile is constructed (for the first time at this redshift) and is consistent with the cluster being isothermal out to 45% of the virial radius. Within the virial radius (corresponding to a measured overdensity of a factor of 200), a total mass of (1.4+/-0.5)*10^15 M_solar is derived, with a gas mass fraction of 12+/-5%. The bolometric X-ray luminosity is (5.3+/-0.2)*10^45 erg/s. The probabilities of finding a cluster of this mass within the volume of the discovery X-ray survey are 8*10^{-5} for Omega_M=1 and 0.64 for Omega_M=0.3, making Omega_M=1 highly unlikely. The entropy profile suggests that entropy evolution is being observed. The metal abundance (of Z=0.33{+0.14}{-0.10} Z_solar), gas mass fraction, and gas distribution are consistent with those of local clusters; thus the bulk of the metals were in place by z=0.89.
(Abridged) The colour-magnitude relations of one of the most massive, high redshift clusters of galaxies known have been studied. Photometry has been measured in the V, R, I, z, F606W, F814W, J and K bands to a depth of K*+2.5 and spectroscopy confir ms 27 K band selected cluster members. The V-K colours are equivalent to a rest-frame colour of ~2700A-J, and provide a very sensitive measure of star-formation activity. HST ACS imaging has been used to morphologically classify the galaxies. The cluster has a low early-type fraction compared to nearby clusters, with only 33% of the cluster members having types E or S0. The early-type member galaxies form a clear red-sequence in all colours. The scatter and slope of the relations show no evolution compared to the equivalent Coma cluster relations, suggesting the stellar populations are already very old. The normalisation of the relations has been compared to models based on synthetic stellar populations, and are most consistent with stellar populations forming at z>3. Some late-type galaxies were found to lie on the red-sequence, suggesting that they have very similar stellar populations to the early-types. These results present a picture of a cluster in which the early-type galaxies are all old, but in which there must be future morphological transformation of galaxies to match the early-type fraction of nearby clusters. In order to preserve the tight colour-magnitude relation of early-types seen in nearby clusters, the late-type galaxies must transform their colours, through the cessation of star-formation, before the morphological transformation occurs. Such evolution is observed in the late-types lying on the colour-magnitude relation.
82 - B. J. Maughan 2006
Deep XMM and Chandra observations of ClJ1226.9+3332 at z=0.89 have enabled the most detailed X-ray mass analysis of any such high-redshift galaxy cluster. The XMM temperature profile of the system shows no sign of central cooling, with a hot core and a radially declining profile. A temperature map shows asymmetry with a hot region that appears to be associated with a subclump of galaxies at the cluster redshift, but is not visible in the X-ray surface brightness. This is likely to be result of a merger event in the cluster, but does not appear to significantly affect the overall temperature profile. The XMM temperature profile, and combined Chandra and XMM emissivity profile allowed precise measurements of the global properties of ClJ1226.9+3332; we find kT=10.4+/-0.6keV, Z=0.16+/-0.05Zsol, and M=5.2^{+1.0}_{-0.8}x10^{14}Msol. We obtain profiles of the metallicity, entropy, cooling time and gas fraction, and find a high concentration parameter for the total density profile of the system. The global properties are compared with the local LT and MT relations, and we are able to make the first observational test of the predicted evolution of the YM relation. We find that departures from these scaling relations are most likely caused by an underestimate of the total mass by ~30% in the X-ray hydrostatic mass analysis due to the apparent recent or ongoing merger activity.
We present a comprehensive mass reconstruction of the rich galaxy cluster Cl 0024+17 at z~0.4 from ACS data, unifying both strong- and weak-lensing constraints. The weak-lensing signal from a dense distribution of background galaxies (~120 per square arcmin) across the cluster enables the derivation of a high-resolution parameter-free mass map. The strongly-lensed objects tightly constrain the mass structure of the cluster inner region on an absolute scale, breaking the mass-sheet degeneracy. The mass reconstruction of Cl 0024+17 obtained in such a way is remarkable. It reveals a ringlike dark matter substructure at r~75 surrounding a soft, dense core at r~50. We interpret this peculiar sub-structure as the result of a high-speed line-of-sight collision of two massive clusters 1-2 Gyr ago. Such an event is also indicated by the cluster velocity distribution. Our numerical simulation with purely collisionless particles demonstrates that such density ripples can arise by radially expanding, decelerating particles that originally comprised the pre-collision cores. Cl 0024+17 can be likened to the bullet cluster 1E0657-56, but viewed $along$ the collision axis at a much later epoch. In addition, we show that the long-standing mass discrepancy for Cl 0024+17 between X-ray and lensing can be resolved by treating the cluster X-ray emission as coming from a superposition of two X-ray systems. The clusters unusual X-ray surface brightness profile that requires a two isothermal sphere description supports this hypothesis.
The thermal Sunyaev-Zeldovich (tSZ) effect is expected to provide a low scatter mass proxy for galaxy clusters since it is directly proportional to the cluster thermal energy. The tSZ observations have proven to be a powerful tool for detecting and s tudying them, but high angular resolution observations are now needed to push their investigation to a higher redshift. In this paper, we report high angular (< 20 arcsec) resolution tSZ observations of the high-redshift cluster CL J1226.9+3332 (z=0.89). It was imaged at 150 and 260 GHz using the NIKA camera at the IRAM 30-meter telescope. The 150 GHz map shows that CL J1226.9+3332 is morphologically relaxed on large scales with evidence of a disturbed core, while the 260 GHz channel is used mostly to identify point source contamination. NIKA data are combined with those of Planck and X-ray from Chandra to infer the clusters radial pressure, density, temperature, and entropy distributions. The total mass profile of the cluster is derived, and we find $M_{500} = 5.96^{+1.02}_{-0.79} $ x $10^{14} M_{odot}$ within the radius $R_{500} = 930^{+50}_{-43}$ kpc, at a 68% confidence level. ($R_{500}$ is the radius within which the average density is 500 times the critical density at the clusters redshift.) NIKA is the prototype camera of NIKA2, a KIDs (kinetic inductance detectors) based instrument to be installed at the end of 2015. This work is, therefore, part of a pilot study aiming at optimizing tSZ NIKA2 large programs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا