In a series of papers, cited in the main body of the paper below, detailed calculations have been presented which show that electromagnetic and weak interactions can induce low energy nuclear reactions to occur with observable rates for a variety of processes. A common element in all these applications is that the electromagnetic energy stored in many relatively slow moving electrons can -under appropriate circumstances- be collectively transferred into fewer, much faster electrons with energies sufficient for the latter to combine with protons (or deuterons, if present) to produce neutrons via weak interactions. The produced neutrons can then initiate low energy nuclear reactions through further nuclear transmutations. The aim of this paper is to extend and enlarge upon various examples analyzed previously, present simplified order of magnitude estimates for each and to illuminate a common unifying theme amongst all of them.