ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of progenitor age and metallicity on luminosity and 56Ni yield in Type Ia supernovae

217   0   0.0 ( 0 )
 نشر من قبل D. Andrew Howell
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Timmes, Brown & Truran found that metallicity variations could theoretically account for a 25% variation in the mass of 56Ni synthesized in Type Ia supernovae (SNe Ia), and thus account for a large fraction of the scatter in observed SN Ia luminosities. Higher-metallicity progenitors are more neutron-rich, producing more stable burning products relative to radioactive 56Ni. We develop a new method for estimating bolometric luminosity and 56Ni yield in SNe Ia and use it to test the theory with data from the Supernova Legacy Survey. We find that the average 56Ni yield does drop in SNe Ia from high metallicity environments, but the theory can only account for 7%--10% of the dispersion in SN Ia 56Ni mass, and thus luminosity. This is because the effect is dominant at metallicities significantly above solar, whereas we find that SN hosts have predominantly subsolar or only moderately above-solar metallicities. We also show that allowing for changes in O/Fe with the metallicity [Fe/H] does not have a major effect on the theoretical prediction of Timmes, Brown & Truran, so long as one is using the O/H as the independent variable. Age may have a greater effect than metallicity -- we find that the luminosity weighted age of the host galaxy is correlated with 56Ni yield, and thus more massive progenitors give rise to more luminous explosions. This is hard to understand if most SNe Ia explode when the primaries reach the Chandrasekhar mass. Finally, we test the findings of Gallagher et al., that the residuals of SNe Ia from the Hubble diagram are correlated with host galaxy metallicity, and we find no such correlation.



قيم البحث

اقرأ أيضاً

We have obtained optical spectra of 29 early-type (E/S0) galaxies that hosted type Ia supernovae (SNe Ia). We have measured absorption-line strengths and compared them to a grid of models to extract the relations between the supernova properties and the luminosity-weighted age/composition of the host galaxies. The same analysis was applied to a large number of early-type field galaxies selected from the SDSS spectroscopic survey. We find no difference in the age and abundance distributions between the field galaxies and the SN Ia host galaxies. We do find a strong correlation suggesting that SNe Ia in galaxies whose populations have a characteristic age greater than 5 Gyr are ~ 1 mag fainter at V(max) than those found in galaxies with younger populations. However, the data cannot discriminate between a smooth relation connecting age and supernova luminosity or two populations of SN Ia progenitors. We find that SN Ia distance residuals in the Hubble diagram are correlated with host-galaxy metal abundance, consistent with the predictions of Timmes, Brown & Truran (2003). The data show that high iron abundance galaxies host less-luminous supernovae. We thus conclude that the time since progenitor formation primarily determines the radioactive Ni production while progenitor metal abundance has a weaker influence on peak luminosity, but one not fully corrected by light-curve shape and color fitters. Assuming no selection effects in discovering SNe Ia in local early-type galaxies, we find a higher specific SN Ia rate in E/S0 galaxies with ages below 3 Gyr than in older hosts. The higher rate and brighter luminosities seen in the youngest E/S0 hosts may be a result of recent star formation and represents a tail of the prompt SN Ia progenitors.
The ultimate understanding of Type Ia Supernovae diversity is one of the most urgent issues to exploit thermonuclear explosions of accreted White Dwarfs (WDs) as cosmological yardsticks. In particular, we investigate the impact of the progenitor syst em metallicity on the physical and chemical properties of the WD at the explosion epoch. We analyze the evolution of CO WDs through the accretion and simmering phases by using evolutionary models based on time-dependent convective mixing and an extended nuclear network including the most important electron captures, beta decays and URCA processes. We find that, due to URCA processes and electron-captures, the neutron excess and density at which the thermal runaway occurs are substantially larger than previously claimed. Moreover, we find that the higher the progenitor metallicity, the larger the neutron excess variation during the accretion and simmering phases and the higher the central density and the convective velocity at the explosion. Hence, the simmering phase acts as an amplifier of the differences existing in SNe Ia progenitors. When applying our results to the neutron excess estimated for the Tycho and Kepler young Supernova remnants, we derive that the metallicity of the progenitors should be in the range Z=0.030-0.032, close to the average metallicity value of the thin disk of the Milky Way. As the amount of ${^{56}}$Ni produced in the explosion depends on the neutron excess and central density at the thermal runaway, our results suggest that the light curve properties depend on the progenitor metallicity.
In Type Ia Supernovae (sneia), the relative abundances of chemical elements are affected by the neutron excess in the composition of the progenitor white dwarf. Since these products leave signatures in the spectra near maximum light, spectral feature s may be used to constrain the composition of the progenitor. We calculate the nucleosynthetic yields for three snia simulations, assuming single degenerate, Chandrasekhar mass progenitors, for a wide range of progenitor metallicities, and calculate synthetic light curves and spectra to explore correlations between progenitor metallicity and the strength of spectral features. We use two 2D simulations of the deflagration-detonation-transition scenario with different $^{56}$Ni yields and the W7 simulation to control for differences between explosion models and total yields. While the overall yields of intermediate mass elements (16 $<$ A $leq$ 40) differ between the three cases, trends in the yields are similar. With increasing metallicity, $^{28}$Si yields remain nearly constant, $^{40}$Ca yields decline, and Ti and $^{54}$Fe yields increase. In the synthetic spectra, we identify two features at 30 days post explosion that appear to deepen with progenitor metallicity: a Ti feature around 4200,AA and a Fe feature around 5200,AA@. In all three simulations, their pseudo equivalent widths show a systematic trend with progenitor metallicity. This suggests that these two features may allow differentiation among progenitor metallicities of observed sneia and potentially help reduce the intrinsic Hubble scatter.
Supernova (SN) cosmology is based on the assumption that the width-luminosity relation (WLR) and the color-luminosity relation (CLR) in the type Ia SN luminosity standardization would not vary with progenitor age. Unlike this expectation, recent age datings of stellar populations in host galaxies have shown significant correlations between progenitor age and Hubble residual (HR). It was not clear, however, how this correlation arises from the SN luminosity standardization process, and how this would impact the cosmological result. Here we show that this correlation originates from a strong progenitor age dependence of the WLR and the CLR, in the sense that SNe from younger progenitors are fainter each at given light-curve parameters $x_1$ and $c$. This is reminiscent of Baades discovery of two Cepheid period-luminosity relations, and, as such, causes a serious systematic bias with redshift in SN cosmology. Other host properties show substantially smaller and insignificant differences in the WLR and CLR for the same dataset. We illustrate that the differences between the high-$z$ and low-$z$ SNe in the WLR and CLR, and in HR after the standardization, are fully comparable to those between the correspondingly young and old SNe at intermediate redshift, indicating that the observed dimming of SNe with redshift is most likely an artifact of over-correction in the luminosity standardization. When this systematic bias with redshift is properly taken into account, there is no or little evidence left for an accelerating universe, posing a serious question to one of the cornerstones of the concordance model.
Binary white dwarf (WD) coalescences driven by gravitational waves or collisions in triple systems are potential progenitors of Type Ia supernovae (SNe Ia). We combine the distribution of 56Ni inferred from observations of SNe Ia with the results of both sub-Chandrasekhar detonation models and direct collision calculations to estimate what mass WDs should be exploding in each scenario to reproduce the observations. These WD mass distributions are then compared with the observed Galactic WD mass distribution and Monte Carlo simulations of WD-WD binary populations. For collisions, we find that the average mass of the individual components of the WD-WD binary must be peaked at ~0.75Msun, significantly higher than the average WD mass in binaries or in the field of ~0.55-0.60Msun. Thus, if collisions produce a large fraction of SNe Ia, then a mechanism must exist that favors large mass WDs. On the other hand, in an old stellar population, collisions would naturally result in a class of low luminosity SNe Ia, and we suggest these may be related to 1991bg-like events. For sub-Chandrasekhar detonations, we find that the average mass of the exploding WDs must be peaked at ~1.1Msun. This is interestingly similar to the average sum of the masses in WD-WD binaries, but it is not clear (and should be further explored) whether double degenerate mergers would be sufficiently efficient at synthesizing 56Ni to match the observed yields. If not, then actual ~1.1Msun WDs would be needed for sub-Chandrasekhar detonations. Since such high mass WDs are produced relatively quickly in comparison to the age of the environments where SNe Ia are found, this would require either accretion onto lower mass WDs prior to ignition or a long timescale between formation of the ~1.1Msun WD and ignition (such as set by gravitational wave emission or binary interactions).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا