ترغب بنشر مسار تعليمي؟ اضغط هنا

Higgs-Radion Mixing with Enhanced Di-Photon Signal

237   0   0.0 ( 0 )
 نشر من قبل Manuel Toharia
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Manuel Toharia




اسأل ChatGPT حول البحث

In the context of warped scenarios in which Standard Model (SM) fields are allowed to propagate in the bulk, we revisit the possible mixing between the IR localized Higgs field and the Radion graviscalar. The phenomenology of the resulting mostly-Higgs field does not suffer important deviations with respect to the case in which all the SM is localized in the IR brane (original Higgs-Radion mixing scenario). On the contrary, the phenomenology of the mostly-Radion field can present important differences with respect to the original scenario. At the LHC, the most striking effect is now the possibility of sizeable Radion decays into photons in a mass range well beyond the ZZ and WW thresholds, not due to dramatically enhanced couplings to photons but to suppressed couplings to massive fields.



قيم البحث

اقرأ أيضاً

We study Higgs-radion mixing in a warped extra dimensional model with Standard Model fields in the bulk, and we include a fourth generation of chiral fermions. The main problem with the fourth generation is that, in the absence of Higgs-radion mixing , it produces a large enhancement in the Higgs production cross-section, now severely constrained by LHC data. We analyze the production and decay rates of the two physical states emerging from the mixing and confront them with present LHC data. We show that the current signals observed can be compatible with the presence of one, or both, of these Higgs-radion mixed states (the $phi$ and the $h$), although with a severely restricted parameter space. In particular, the radion interaction scale must be quite low, Lambda_phi ~ 1-1.3 TeV. If m_phi ~ 125 GeV, the $h$ state must be heavier (m_h>320 GeV). If m_h ~ 125 GeV, the $phi$ state must be quite light or close in mass (m_phi ~ 120 GeV). We also present the modified decay branching ratios of the mixed Higgs-radion states, including flavor violating decays into fourth generation quarks and leptons. The windows of allowed parameter space obtained are very sensitive to the increased precision of upcoming LHC data. During the present year, a clear picture of this scenario will emerge, either confirming or further severely constraining this scenario.
218 - S. Hesselbach 2007
Physical Higgs particles in the Minimal Supersymmetric Standard Model (MSSM) with explicit CP violation are CP mixed states. The decay of these Higgs particles can be analysed to study the CP properties of the MSSM. In the present work we consider th e di-photon channel of the lightest neutral Higgs boson for this purpose. Compared to earlier studies on effects of scalar/pseudo-scalar mixing, our analysis also investigates the effect due to Higgs-sfermion-sfermion couplings along with that of mixing. We find that a light stop may have a strong impact on the width and Branching Ratio (BR) of the decay process H1 --> gamma.gamma, whereas other light sparticles have only little influence. In some regions of the MSSM parameter space with large CP-violating phase phi-mu ~ 90 deg a light (~ 200 GeV) stop can change the di-photon BR by more than 50 % compared to the case with heavy (~ 1 TeV) stop and otherwise same MSSM parameters.
We study the detectability of the stoponium in the di-Higgs decay mode at the photon-photon collider option of the International $e^+e^-$ Linear Collider (ILC), whose center-of-mass energy is planned to reach $sim 1$ TeV. We find that $5sigma$ detect ion of the di-Higgs decay mode is possible with the integrated electron-beam luminosity of $1 {rm ab}^{-1}$ if the signal cross section, $sigma(gamma gamma rightarrow sigma_{tilde{t}_1} rightarrow hh)$, of ${cal O}(0.1)$ fb is realized for the stoponium mass smaller than $sim$ 800 GeV at 1 TeV ILC. Such a value of the cross section can be realized in the minimal supersymmetric standard model (MSSM) with relatively large trilinear stop-stop-Higgs coupling constant. Implication of the stoponium cross section measurement for the MSSM stop sector is also discussed.
178 - S. Hesselbach 2007
The Minimal Supersymmetric Standard Model (MSSM) with explicit CP violation is studied with the help of the di-photon decay channel of the lightest neutral Higgs boson. Effects of CP violation, entering via the scalar/pseudo-scalar mixing at higher o rder as well as through the Higgs-sfermion-sfermion couplings at tree-level, are analyzed in the MSSM with and without light sparticles. A light stop may have a strong impact on the decay width and Branching Ratio (BR) of the decay process H_1 -> gamma gamma, whereas other light sparticles have only little influence. In some regions of the MSSM parameter space with large CP-violating phase phi_mu ~ 90 degrees a light stop can change the BR by more than 50%.
In the context of the $B-L$ Supersymmetric Standard Model (BLSSM), we investigate the consistency of a light Higgs boson, with mass around $90-95$ GeV, with the results of a search performed by the CMS collaboration in the di-photon channel at the in tegrated luminosity of 35.9 fb$^{-1}$ and $sqrt s$ = 13 TeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا