ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral modeling of gaseous metal disks around DAZ white dwarfs

104   0   0.0 ( 0 )
 نشر من قبل K. Werner
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on our attempt for the first non-LTE modeling of gaseous metal disks around single DAZ white dwarfs recently discovered by Gaensicke et al. and thought to originate from a disrupted asteroid. We assume a Keplerian rotating viscous disk ring composed of calcium and hydrogen and compute the detailed vertical structure and emergent spectrum. We find that the observed infrared CaII emission triplet can be modeled with a hydrogen-deficient gas ring located at R=1.2 R_sun, inside of the tidal disruption radius, with Teff about 6000 K and a low surface mass density of about 0.3 g/cm**2. A disk having this density and reaching from the central white dwarf out to R=1.2 R_sun would have a total mass of 7 10**21 g, corresponding to an asteroid with about 160 km diameter.



قيم البحث

اقرأ أيضاً

109 - Ryan Miranda IAS 2018
Spectroscopic observations of some metal-rich white dwarfs (WDs), believed to be polluted by planetary material, reveal the presence of compact gaseous metallic disks orbiting them. The observed variability of asymmetric, double-peaked emission line profiles in about half of such systems could be interpreted as the signature of precession of an eccentric gaseous debris disk. The variability timescales --- from decades down to $1.4$ yr (recently inferred for the debris disk around HE 1349--2305) --- are in rough agreement with the rate of general relativistic (GR) precession in the test particle limit. However, it has not been demonstrated that this mechanism can drive such a fast, coherent precession of a radially extended (out to $1 R_odot$) gaseous disk mediated by internal stresses (pressure). Here we use the linear theory of eccentricity evolution in hydrodynamic disks to determine several key properties of eccentric modes in gaseous debris disks around WDs. We find a critical dependence of both the precession period and radial eccentricity distribution of the modes on the inner disk radius, $r_mathrm{in}$. For small inner radii, $r_mathrm{in} lesssim (0.2 - 0.4) R_odot$, the modes are GR-driven, with periods of $approx 1 - 10$ yr. For $r_mathrm{in} gtrsim (0.2 - 0.4) R_odot$, the modes are pressure-dominated, with periods of $approx 3 - 20$ yr. Correspondence between the variability periods and inferred inner radii of the observed disks is in general agreement with this trend. In particular, the short period of HE 1349--2305 is consistent with its small $r_mathrm{in}$. Circum-WD debris disks may thus serve as natural laboratories for studying the evolution of eccentric gaseous disks.
Optical spectroscopic observations of white dwarf stars selected from catalogs based on the Gaia DR2 database reveal nine new gaseous debris disks that orbit single white dwarf stars, about a factor of two increase over the previously known sample. F or each source we present gas emission lines identified and basic stellar parameters, including abundances for lines seen with low-resolution spectroscopy. Principle discoveries include: (1) the coolest white dwarf (Teff~12,720 K) with a gas disk; this star, WD0145+234, has been reported to have undergone a recent infrared outburst; (2) co-location in velocity space of gaseous emission from multiple elements, suggesting that different elements are well-mixed; (3) highly asymmetric emission structures toward SDSSJ0006+2858, and possibly asymmetric structures for two other systems; (4) an overall sample composed of approximately 25% DB and 75% DA white dwarfs, consistent with the overall distribution of primary atmospheric types found in the field population; and (5) never-before-seen emission lines from Na in the spectra of GaiaJ0611-6931, semi-forbidden Mg, Ca, and Fe lines toward WD0842+572, and Si in both stars. The currently known sample of gaseous debris disk systems is significantly skewed towards northern hemisphere stars, suggesting a dozen or so emission line stars are waiting to be found in the southern hemisphere.
124 - You-Hua Chu 2011
Two types of dust disks around white dwarfs (WDs) have been reported: small dust disks around cool metal-rich WDs consisting of tidally disrupted asteroids, and a large dust disk around the hot central WD of the Helix planetary nebula (PN) possibly p roduced by collisions among Kuiper Belt-like objects. To search for more dust disks of the latter type, we have conducted a Spitzer MIPS 24 um survey of 71 hot WDs or pre-WDs, among which 35 are central stars of PNe (CSPNs). Nine of these evolved stars are detected and their 24 um flux densities are at least two orders of magnitude higher than their expected photospheric emission. Considering the bias against detection of distant objects, the 24 um detection rate for the sample is >~15%. It is striking that seven, or ~20%, of the WD and pre-WDs in known PNe exhibit 24 um excesses, while two, or 5-6%, of the WDs not in PNe show 24 um excesses and they have the lowest 24 um flux densities. We have obtained follow-up Spitzer IRS spectra for five objects. Four show clear continuum emission at 24 um, and one is overwhelmed by a bright neighboring star but still show a hint of continuum emission. In the cases of WD 0950+139 and CSPN K1-22, a late-type companion is present, making it difficult to determine whether the excess 24 um emission is associated with the WD or its red companion. High-resolution images in the mid-IR are needed to establish unambiguously the stars responsible for the 24 um excesses.
170 - C. Melis 2010
We have performed a comprehensive ground-based observational program aimed at characterizing the circumstellar material orbiting three single white dwarf stars previously known to possess gaseous disks. Near-infrared imaging unambiguously detects exc ess infrared emission towards Ton 345 and allows us to refine models for the circumstellar dust around all three white dwarf stars. We find that each white dwarf hosts gaseous and dusty disks that are roughly spatially coincident, a result that is consistent with a scenario in which dusty and gaseous material has its origin in remnant parent bodies of the white dwarfs planetary systems. We briefly describe a new model for the gas disk heating mechanism in which the gaseous material behaves like a Z II region. In this Z II region, gas primarily composed of metals is photoionized by ultraviolet light and cools through optically thick allowed Ca II-line emission.
The photospheres of some white dwarfs are polluted by accretion of material from their surrounding planetary debris. White dwarfs with dust disks are often heavily polluted and high-resolution spectroscopic observations of these systems can be used t o infer the chemical compositions of extrasolar planetary material. Here, we report spectroscopic observation and analysis of 19 white dwarfs with dust disks or candidate disks. The overall abundance pattern very much resembles that of bulk Earth and we are starting to build a large enough sample to probe a wide range of planetary compositions. We found evidence for accretion of Fe-rich material onto two white dwarfs as well as O-rich but H-poor planetary debris onto one white dwarf. In addition, there is a spread in Mg/Ca and Si/Ca ratios and it cannot be explained by differential settling or igneous differentiation. The ratios appear to follow an evaporation sequence. In this scenario, we can constrain the mass and number of evaporating bodies surrounding polluted white dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا