ترغب بنشر مسار تعليمي؟ اضغط هنا

Balanced metrics on non-Kahler Calabi-Yau threefolds

240   0   0.0 ( 0 )
 نشر من قبل Jixiang Fu
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct balanced metrics on the family of non-Kahler Calabi-Yau threefolds that are obtained by smoothing after contracting $(-1,-1)$-rational curves on Kahler Calabi-Yau threefold. As an application, we construct balanced metrics on complex manifolds diffeomorphic to connected sum of $kgeq 2$ copies of $S^3times S^3$.



قيم البحث

اقرأ أيضاً

Hermitian, pluriclosed metrics with vanishing Bismut-Ricci form give a natural extension of Calabi-Yau metrics to the setting of complex, non-Kahler manifolds, and arise independently in mathematical physics. We reinterpret this condition in terms of the Hermitian-Einstein equation on an associated holomorphic Courant algebroid, and thus refer to solutions as Bismut Hermitian-Einstein. This implies Mumford-Takemoto slope stability obstructions, and using these we exhibit infinitely many topologically distinct complex manifolds in every dimension with vanishing first Chern class which do not admit Bismut Hermitian-Einstein metrics. This reformulation also leads to a new description of pluriclosed flow in terms of Hermitian metrics on holomorphic Courant algebroids, implying new global existence results, in particular on all complex non-Kahler surfaces of nonnegative Kodaira dimension. On complex manifolds which admit Bismut-flat metrics we show global existence and convergence of pluriclosed flow to a Bismut-flat metric, which in turn gives a classification of generalized Kahler structures on these spaces.
In this note we initiate a program to obtain global descriptions of Calabi-Yau moduli spaces, to calculate their Picard group, and to identify within that group the Hodge line bundle, and the closely-related Bagger-Witten line bundle. We do this here for several Calabi-Yaus obtained in [DW09] as crepant resolutions of the orbifold quotient of the product of three elliptic curves. In particular we verify in these cases a recent claim of [GHKSST16] by noting that a power of the Hodge line bundle is trivial -- even though in most of these cases the Picard group is infinite.
We formulate a Calabi-Yau type conjecture in generalized Kahler geometry, focusing on the case of nondegenerate Poisson structure. After defining natural Hamiltonian deformation spaces for generalized Kahler structures generalizing the notion of Kahl er class, we conjecture unique solvability of Gualtieris Calabi-Yau equation within this class. We establish the uniqueness, and moreover show that all such solutions are actually hyper-Kahler metrics. We furthermore establish a GIT framework for this problem, interpreting solutions of this equation as zeros of a moment map associated to a Hamiltonian action and finding a Kempf-Ness functional. Lastly we indicate the naturality of generalized Kahler-Ricci flow in this setting, showing that it evolves within the given Hamiltonian deformation class, and that the Kempf-Ness functional is monotone, so that the only possible fixed points for the flow are hyper-Kahler metrics. On a hyper-Kahler background, we establish global existence and weak convergence of the flow.
We construct new examples of solutions of the Hull-Strominger system on non-Kahler torus bundles over K3 surfaces, with the property that the connection $ abla$ on the tangent bundle is Hermite-Yang-Mills. With this ansatz for the connection $ abla$, we show that the existence of solutions reduces to known results about moduli spaces of slope-stable sheaves on a K3 surface, combined with elementary analytical methods. We apply our construction to find the first examples of T-dual solutions of the Hull-Strominger system on compact non-Kahler manifolds with different topology.
123 - Yuji Sano , Carl Tipler 2017
We give a moment map interpretation of some relatively balanced metrics. As an application, we extend a result of S. K. Donaldson on constant scalar curvature Kahler metrics to the case of extremal metrics. Namely, we show that a given extremal metri c is the limit of some specific relatively balanced metrics. As a corollary, we recover uniqueness and splitting results for extremal metrics in the polarized case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا