ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental magnetic form factors in Co3V2O8: A combined study of ab initio calculations, magnetic Compton scattering and polarized neutron diffraction

302   0   0.0 ( 0 )
 نشر من قبل Mohamed Zbiri
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a combination of ab initio calculations, magnetic Compton scattering and polarized neutron experiments, which elucidate the density distribution of unpaired electrons in the kagome staircase system Co3V2O8. Ab initio wave functions were used to calculate the spin densities in real and momentum space, which show good agreement with the respective experiments. It has been found that the spin polarized orbitals are equally distributed between the t2g and the eg levels for the spine (s) Co ions, while the eg orbitals of the cross-tie (c) Co ions only represent 30% of the atomic spin density. Furthermore, the results reveal that the magnetic moments of the cross-tie Co ions, which are significantly smaller than those of the spine Co ions in the zero-field ferromagnetic structure, do not saturate by applying an external magnetic field of 2 T along the easy axis a, but that the increasing bulk magnetization originates from induced magnetic moments on the O and V sites. The refined individual magnetic moments are mu(Co_c)=1.54(4) mu_B, mu(Co_s)=2.87(3) mu_B, mu(V)=0.41(4) mu_B, mu(O1)=0.05(5) mu_B, mu(O2)=0.35(5) mu_B, and; mu(O3)=0.36(5) mu_B combining to the same macroscopic magnetization value, which was previously only attributed to the Co ions.



قيم البحث

اقرأ أيضاً

Electronic structure of FeGa3 has been studied using experiments and ab-initio calculations. Magnetization measurements show that FeGa3 is inherently diamagnetic in nature. Our studies indicate that the previously reported magnetic moment on the Fe a toms in FeGa3 is not an intrinsic property of FeGa3, but is primarily due to the presence of disorder, defects, grain boundaries etc that break the symmetry about the Fe dimers. Analysis of the results obtained from magnetic measurements, photoelectron spectroscopy, Fe K-edge X-ray absorption near edge spectroscopy and ab-initio calculations clearly indicates that, the effects of on-site Coulomb repulsion between the Fe 3d electrons do not play any role in determining the electronic and magnetic properties of FeGa3. Detailed analysis of results of single crystal and poycrystalline FeGa3, helps to resolve the discrepancy in the electronic and magnetic properties in FeGa3 existing in the literature, consistently.
The magnetic properties of Co3V2O8 have been studied by single-crystal neutron-diffraction. In zero magnetic field, the observed broadening of the magnetic Bragg peaks suggests the presence of disorder both in the low-temperature ferromagnetic and in the higher-temperature antiferromagnetic state. The field dependence of the intensity and position of the magnetic reflections in Co3V2O8 reveals a complex sequence of phase transitions in this Kagome staircase compound. For H//a, a commensurate-incommensurate-commensurate transition is found in a field of 0.072 T in the antiferromagnetic phase at 7.5 K. For H//c at low-temperature, an applied field induces an unusual transformation from a ferromagnetic to an antiferromagnetic state at about 1 T accompanied by a sharp increase in magnetisation.
An empirical multiorbital (spd) tight binding (TB) model including magnetism and spin-orbit coupling is applied to calculations of magnetic anisotropy energy (MAE) in CoPt L1_0 structure. A realistic Slater-Koster parametrisation for single-element t ransition metals is adapted for the ordered binary alloy. Spin magnetic moment and density of states are calculated using a full-potential linearized augmented plane-wave (LAPW) ab initio method and our TB code with different variants of the interatomic parameters. Detailed mutual comparison of this data allows for determination of a subset of the compound TB parameters tuning of which improves the agreement of the TB and LAPW results. MAE calculated as a function of band filling using the refined parameters is in broad agreement with ab initio data for all valence states and in quantitative agreement with ab initio and experimental data for the natural band filling. Our work provides a practical basis for further studies of relativistic magnetotransport anisotropies by means of local Greens function formalism which is directly compatible with our TB approach.
This paper presents results of a recent study of multiferroic CCO by means of single crystal neutron diffraction. This system has two close magnetic phase transitions at $T sub{N1}=24.2$ K and $T sub{N2}=23.6$ K. The low temperature magnetic structur e below $T sub{N2}$ is unambiguously determined to be a fully 3-dimensional proper screw. Between $T sub{N1}$ and $T sub{N2}$ antiferromagnetic order is found that is essentially 2-dimensional. In this narrow temperature range, magnetic near neighbor correlations are still long range in the ($H,K$) plane, whereas nearest neighbors along the $L$-direction are uncorrelated. Thus, the multiferroic state is realized only in the low-temperature 3-dimensional state and not in the 2-dimensional state.
The anharmonic phenomena in Zirconium Hydrides and Deuterides, including {epsilon}-ZrH2, {gamma}-ZrH, and {gamma}-ZrD, have been investigated from aspects of inelastic neutron scattering (INS) and lattice dynamics calculations within the framework of density functional theory (DFT). The observed multiple sharp peaks below harmonic multi-phonon bands in the experimental spectra of all three materials did not show up in the simulated INS spectra based on the harmonic approximation, indicating the existence of strong anharmonicity in those materials and the necessity of further explanations. We present a detailed study on the anharmonicity of zirconium hydrides/deuterides by exploring the 2D potential energy surface of hydrogen/deuterium atoms, and solving the corresponding 2D single-particle Schrodinger equation to get the eigenfrequencies. The obtained results well describe the experimental INS spectra and show harmonic behavior in the fundamental modes and strong anharmonicity at higher energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا