ﻻ يوجد ملخص باللغة العربية
We perform a systematic analysis of k-strings in the framework of the gauge/gravity correspondence. We discuss the Klebanov-Strassler supergravity background which is known to be dual to a confining supersymmetric gauge theory with chiral symmetry breaking. We obtain the k-string tension in agreement with expectations of field theory. Our main new result is the study of one-loop corrections on the string theoretic side. We explicitly find the frequency spectrum for both the bosons and the fermions for quadratic fluctuations about the classical supergravity solution. Further we use the massless modes to compute 1/L contributions to the one loop corrections to the k-string energy. This corresponds to the Luscher term contribution to the k-string potential on the gauge theoretic side of the correspondence.
We consider $alpha$ corrections to the one-loop four-point correlator of the stress-tensor multiplet in $mathcal{N}=4$ super Yang-Mills at order $1/N^4$. Holographically, this is dual to string corrections of the one-loop supergravity amplitude on Ad
We discuss the string corrections to one-loop amplitudes in AdS$_5times$S$^5$, focussing on their expressions in Mellin space. We present the leading $(alpha)^3$ corrections to the family of correlators $langle mathcal{O}_2 mathcal{O}_2 mathcal{O}_p
The leading term for the energy of a bound state of k-quarks and k-antiquarks is proportional to its separation L. These k-string configurations have a Luscher term associated with their quantum fluctuations which is typically a 1/L correction to the
We demonstrate explicitly the absence of the quantum corrections to the Carroll-Field-Jackiw (CFJ) term beyond one-loop within the Lorentz-breaking CPT-odd extension of QED. The proof holds within two prescriptions of quantum calculations, with the a
We revisit the computation of the 1-loop string correction to the latitude minimal surface in $AdS_5 times S^5$ representing 1/4 BPS Wilson loop in planar $cal N$=4 SYM theory previously addressed in arXiv:1512.00841 and arXiv:1601.04708. We resolve