ترغب بنشر مسار تعليمي؟ اضغط هنا

Copolymer-induced stabilizing effect of highly swollen hexagonal mesophases

80   0   0.0 ( 0 )
 نشر من قبل Laurence Ramos
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Laurence Ramos




اسأل ChatGPT حول البحث

We show quantitatively that tiny amounts of copolymer that decorate a oil/water interfaces can greatly enhance the stability of swollen surfactant hexagonal phases, comprising oil tubes regularly arranged in a water matrix. Such soft composite materials, whose both radius of the tubes and water channel between the tubes can be controlled independently over large ranges, offer a potential interest for the synthesis of mesoporous materials.



قيم البحث

اقرأ أيضاً

Poly(ethylene oxide)-$textit{b}$-poly(butylmethacrylate) (PEO-$textit{b}$-PBMA) copolymers have recently been identified as excellent building blocks for the synthesis of hierarchical nanoporous materials. Nevertheless, while experiments have unveile d their potential to form bicontinuous phases and vesicles, a general picture of their phase and aggregation behavior is still missing. By performing Molecular Dynamics simulations, we here apply our recent coarse-grained model of PEO-$textit{b}$-PBMA to investigate its self-assembly in water and tetrahydrofuran (THF) and unveil the occurrence of a wide spectrum of mesophases. In particular, we find that the morphological phase diagram of this ternary system incorporates bicontinuous and lamellar phases at high copolymer concentrations, and finite-size aggregates, such as dispersed sheets or disk-like aggregates, spherical vesicles and rod-like vesicles, at low copolymer concentrations. The morphology of these mesophases can be controlled by tuning the THF/water relative content, which has a striking effect on the kinetics of self-assembly as well as on the resulting equilibrium structures. Our results disclose the fascinating potential of PEO-$textit{b}$-PBMA copolymers for the templated synthesis of nanostructured materials and offer a guideline to fine-tune their properties by accurately selecting the THF/water ratio.
Collective behavior widely exists in nature, ranging from the macroscopic cloud of swallows to the microscopic cloud of colloidal particles. The behavior of an individual inside the collective is distinctive from its behavior alone, as it follows its neighbors. The introduction of such collective behavior in two-dimensional (2D) materials may offer new possibilities to achieve desired but unattained properties. Here, we report a highly sensitive magneto-optic effect and transmissive magneto-coloration via introducing collective behavior into magnetic 2D material dispersions. The increase of ionic strength in the dispersion enhances the collective behavior of colloidal particles, giving rise to a magneto-optic Cotton-Mouton coefficient up to 2700 T-2m-1 which is the highest value obtained so far, being three orders of magnitude larger than other known transparent media. We also reveal linearly dependence of magneto-coloration on the concentration and hydration radius of ions. Such linear dependence and the extremely large Cotton-Mouton coefficient cooperatively allow fabrication of giant magneto-birefringent devices for color-centered visual sensing.
122 - Franco Ferrari 2016
An extensive study of single block copolymer knots containing two kinds of monomers $A$ and $B$ is presented. The knots are in a solution and their monomers are subjected to short range interactions that can be attractive or repulsive. In view of pos sible applications in medicine and the construction of intelligent materials, it is shown that several features of copolymer knots can be tuned by changing the monomer configuration. A very fast and abrupt swelling with increasing temperature is obtained in certain multiblock copolymers, while the size and the swelling behavior at high temperatures may be controlled in diblock copolymers. Interesting new effects appear in the thermal diagrams of copolymer knots when their length is increased.
Simulations of five different coarse-grained models of symmetric diblock copolymer melts are compared to demonstrate a universal (i.e., model-independent) dependence of the free energy on the invariant degree of polymerization $overline{N}$, and to s tudy universal properties of the order-disorder transition (ODT). The ODT appears to exhibit two regimes: Systems of very long chains ($overline{N} gtrsim 10^{4}$) are well described by the Fredrickson-Helfand theory, which assumes weak segregation near the ODT. Systems of smaller but experimentally relevant values, $overline{N} lesssim 10^4$, undergo a transition between strongly segregated disordered and lamellar phases that, though universal, is not adequately described by any existing theory.
Photon correlation spectroscopy and rheological measurements are performed to investigate the microscopic dynamics and mechanical responses of aqueous solutions of triblock copolymers and aqueous mixtures of triblock copolymers and anionic surfactant s. Increasing the concentration of triblock copolymers results in a sharp increase in the magnitude of the complex moduli characterising the samples. This is understood in terms of the changes in the aggregation and packing behaviours of the copolymers and the constraints imposed upon their dynamics due to increased close packing. The addition of suitable quantities of an anionic surfactant to a strongly elastic copolymer solution results in a decrease in the complex moduli of the samples by several decades. It is argued that the shape anisotropy and size polydispersity of the micelles comprising mixtures cause dramatic changes in the packing behaviour, resulting in sample unjamming and the observed decrease in complex moduli. Finally, a phase diagram is constructed in the temperature-surfactant concentration plane to summarise the jamming-unjamming behaviour of aggregates constituting triblock copolymer-anionic surfactant mixtures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا