ترغب بنشر مسار تعليمي؟ اضغط هنا

Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds

142   0   0.0 ( 0 )
 نشر من قبل Rahul Pandharipande
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove the equivariant Gromov-Witten theory of a nonsingular toric 3-fold X with primary insertions is equivalent to the equivariant Donaldson-Thomas theory of X. As a corollary, the topological vertex calculations by Agangic, Klemm, Marino, and Vafa of the Gromov-Witten theory of local Calabi-Yau toric 3-folds are proven to be correct in the full 3-leg setting.



قيم البحث

اقرأ أيضاً

We conjecture an equivalence between the Gromov-Witten theory of 3-folds and the holomorphic Chern-Simons theory of Donaldson-Thomas. For Calabi-Yau 3-folds, the equivalence is defined by the change of variables, exp(iu)=-q, where u is the genus para meter of GW theory and q is charge parameter of DT theory. The conjecture is proven for local Calabi-Yau toric surfaces.
We discuss the GW/DT correspondence for 3-folds in both the absolute and relative cases. Descendents in Gromov-Witten theory are conjectured to be equivalent to Chern characters of the universal sheaf in Donaldson-Thomas theory. Relative constraints in Gromov-Witten theory are conjectured to correspond in Donaldson-Thomas theory to cohomology classes of the Hilbert scheme of points of the relative divisor. Independent of the conjectural framework, we prove degree 0 formulas for the absolute and relative Donaldson-Thomas theories of toric varieties.
187 - Artan Sheshmani 2019
This article provides a summary of arXiv:1701.08899 and arXiv:1701.08902 where the authors studied the enumerative geometry of nested Hilbert schemes of points and curves on algebraic surfaces and their connections to threefold theories, and in parti cular relevant Donaldson-Thomas, Vafa-Witten and Seiberg-Witten theories.
We compute the motivic Donaldson-Thomas theory of small crepant resolutions of toric Calabi-Yau 3-folds.
82 - Yalong Cao , Martijn Kool 2017
We study Hilbert schemes of points on a smooth projective Calabi-Yau 4-fold $X$. We define $mathrm{DT}_4$ invariants by integrating the Euler class of a tautological vector bundle $L^{[n]}$ against the virtual class. We conjecture a formula for their generating series, which we prove in certain cases when $L$ corresponds to a smooth divisor on $X$. A parallel equivariant conjecture for toric Calabi-Yau 4-folds is proposed. This conjecture is proved for smooth toric divisors and verified for more general toric divisors in many examples. Combining the equivariant conjecture with a vertex calculation, we find explicit positive rational weights, which can be assigned to solid partitions. The weighted generating function of solid partitions is given by $exp(M(q)-1)$, where $M(q)$ denotes the MacMahon function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا