ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep MMT Transit Survey of the Open Cluster M37 IV: Limit on the Fraction of Stars With Planets as Small as 0.3 R_J

182   0   0.0 ( 0 )
 نشر من قبل Joel Hartman
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of a deep (15 ~< r ~< 23), 20 night survey for transiting planets in the intermediate age open cluster M37 (NGC 2099) using the Megacam wide-field mosaic CCD camera on the 6.5m MMT. We do not detect any transiting planets among the ~1450 observed cluster members. We do, however, identify a ~ 1 R_J candidate planet transiting a ~ 0.8 Msun Galactic field star with a period of 0.77 days. The source is faint (V = 19.85 mag) and has an expected velocity semi-amplitude of K ~ 220 m/s (M/M_J). We conduct Monte Carlo transit injection and recovery simulations to calculate the 95% confidence upper limit on the fraction of cluster members and field stars with planets as a function of planetary radius and orbital period. Assuming a uniform logarithmic distribution in orbital period, we find that < 1.1%, < 2.7% and < 8.3% of cluster members have 1.0 R_J planets within Extremely Hot Jupiter (EHJ, 0.4 < T < 1.0 day), Very Hot Jupiter (VHJ, 1.0 < T < 3.0 days) and Hot Jupiter (HJ, 3.0 < T < 5.0 days) period ranges respectively. For 0.5 R_J planets the limits are < 3.2%, and < 21% for EHJ and VHJ period ranges, while for 0.35 R_J planets we can only place an upper limit of < 25% on the EHJ period range. For a sample of 7814 Galactic field stars, consisting primarily of FGKM dwarfs, we place 95% upper limits of < 0.3%, < 0.8% and < 2.7% on the fraction of stars with 1.0 R_J EHJ, VHJ and HJ assuming the candidate planet is not genuine. If the candidate is genuine, the frequency of ~ 1.0 R_J planets in the EHJ period range is 0.002% < f_EHJ < 0.5% with 95% confidence. We place limits of < 1.4%, < 8.8% and < 47% for 0.5 R_J planets, and a limit of < 16% on 0.3 R_J planets in the EHJ period range. This is the first transit survey to place limits on the fraction of stars with planets as small as Neptune.



قيم البحث

اقرأ أيضاً

We have conducted a deep ($15 la r la 23$), 20 night survey for transiting planets in the intermediate age open cluster M37 (NGC 2099) using the Megacam wide-field mosaic CCD camera on the 6.5m Multiple Mirror Telescope (MMT). In this paper we descri be the observations and data reduction procedures for the survey and analyze the stellar content and dynamical state of the cluster. By combining high resolution spectroscopy with existing $BVI_{C}K_{S}$ and new $gri$ color magnitude diagrams we determine the fundamental cluster parameters: $t = 485 pm 28$ Myr without overshooting ($t = 550 pm 30 {rm Myr}$ with overshooting), $E(B-V) = 0.227 pm 0.038$, $(m-M)_{V} = 11.57 pm 0.13$ and $[M/H] = +0.045 pm 0.044$ which are in good agreement with, though more precise than, previous measurements. We determine the mass function down to $0.3 M_{odot}$ and use this to estimate the total cluster mass of $3640 pm 170 M_{odot}$.
In the course of conducting a deep (14.5 ~< r ~< 23), 20 night survey for transiting planets in the rich ~550 Myr old open cluster M37 we have measured the rotation periods of 575 stars which lie near the cluster main sequence, with masses 0.2 Msun ~ < M ~< 1.3 Msun. This is the largest sample of rotation periods for a cluster older than 500 Myr. Using this rich sample we investigate a number of relations between rotation period, color and the amplitude of photometric variability. Stars with M >~ 0.8 Msun show a tight correlation between period and mass with heavier stars rotating more rapidly. There is a group of 4 stars with P > 15 days that fall well above this relation, which, if real, would present a significant challenge to theories of stellar angular momentum evolution. Below 0.8 Msun the stars continue to follow the period-mass correlation but with a broad tail of rapid rotators that expands to shorter periods with decreasing mass. We combine these results with observations of other open clusters to test the standard theory of lower-main sequence stellar angular momentum evolution. We find that the model reproduces the observations for solar mass stars, but discrepancies are apparent for stars with 0.6 ~< M ~< 1.0 Msun. We also find that for late-K through early-M dwarf stars in this cluster rapid rotators tend to be bluer than slow rotators in B-V but redder than slow rotators in V-I_{C}. This result supports the hypothesis that the significant discrepancy between the observed and predicted temperatures and radii of low-mass main sequence stars is due to stellar activity.
207 - S.-W. Chang , Y.-I. Byun , 2015
We present a comprehensive re-analysis of stellar photometric variability in the field of the open cluster M37 following the application of a new photometry and de-trending method to MMT/Megacam image archive. This new analysis allows a rare opportun ity to explore photometric variability over a broad range of time-scales, from minutes to a month. The intent of this work is to examine the entire sample of over 30,000 objects for periodic, aperiodic, and sporadic behaviors in their light curves. We show a modified version of the fast $chi^{2}$ periodogram algorithm (F$chi^{2}$) and change-point analysis (CPA) as tools for detecting and assessing the significance of periodic and non-periodic variations. The benefits of our new photometry and analysis methods are evident. A total of 2306 stars exhibit convincing variations that are induced by flares, pulsations, eclipses, starspots, and unknown causes in some cases. This represents a 60% increase in the number of variables known in this field. Moreover, 30 of the previously identified variables are found to be false positives resulting from time-dependent systematic effects. New catalog includes 61 eclipsing binary systems, 92 multiperiodic variable stars, 132 aperiodic variables, and 436 flare stars, as well as several hundreds of rotating variables. Based on extended and improved catalog of variables, we investigate the basic properties (e.g., period, amplitude, type) of all variables. The catalog can be accessed through the web interface (http://stardb.yonsei.ac.kr/).
We present deep CCD photometry of the very rich, intermediate aged (similar to the Hyades) open star cluster NGC 2099 (M37). The V, B-V color-magnitude diagram (CMD) for the cluster shows an extremely well populated and very tightly constrained main- sequence extending over 12 magnitudes from the turn-off. The CFH12K photometry for this cluster is faint enough (V ~ 24.5) to detect the remnants of the most massive progenitor cluster stars under the Type I SNe limit. Therefore, the CMD of the cluster also exhibits a well defined white dwarf `clump caused by the decreased rate of cooling of these stars as they age, and a subsequent gap with very few objects. The termination point (Mv = 11.95 +/- 0.30) of the white dwarf luminosity function gives a white dwarf cooling age of 566 +/- 154/176 Myrs which is in excellent agreement with the main-sequence turn-off isochrone age (520 Myrs). By carefully accounting for errors, we show that the cooling age confirms that models including convective core overshooting are preferred for young-intermediate aged clusters. We also derive the reddening (E(B-V) = 0.21 +/- 0.03) and distance ((m-M)v = 11.55 +/- 0.13) to NGC 2099 by matching main-sequence features in the cluster to a new fiducial main-sequence for the Hyades. As a continuing part of the goals of the CFHT Open Star Cluster Survey to better understand dynamical processes of open clusters, we also fit a King model to the cluster density distribution and investigate the cluster main-sequence luminosity and mass functions in increasing concentric annuli. We find some evidence for mass segregation within the boundary of NGC 2099 as expected given the clusters age relative to the dynamical age. The present global mass function for the cluster is found to be shallower than a Salpeter IMF.
141 - S.-W. Chang , Y.-I. Byun , 2015
Based on one-month long MMT time-series observations of the open cluster M37, we monitored light variations of nearly 2500 red dwarfs and successfully identified 420 flare events from 312 cluster M dwarf stars. For each flare light curve, we derived observational and physical parameters, such as flare shape, peak amplitude, duration, energy, and peak luminosity. We show that cool stars produce serendipitous flares energetic enough to be observed in the $r$-band, and their temporal and peak characteristics are almost the same as those in traditional $U$-band observations. We also found many large-amplitude flares with inferred $Delta u > 6$ mag in the cluster sample which had been rarely reported in previous ground-based observations. Following the ergodic hypothesis, we investigate in detail statistical properties of flare parameters over a range of energy ($E_{r}$ $simeq$ $10^{31}-10^{34}$ erg). As expected, there are no statistical differences in the distributions of flare timescales, energies, and frequencies among stars of the same age and mass group. We note that our sample tend to have longer rise and decay timescales compared to those seen in field flare stars of the same spectral type and be more energetic. Flare frequency distributions follow power-law distributions with slopes $beta sim0.62-1.21$ for all flare stars and $beta sim0.52-0.97$ for stars with membership information ($P_{mem} geq 0.2$). These are in general agreement with previous works on flare statistics of young open clusters and nearby field stars. Our results give further support to the classical age-activity relations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا