ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared Propagators in MAG and Feynman gauge on the lattice

171   0   0.0 ( 0 )
 نشر من قبل Tereza Mendes
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose to investigate infrared properties of gluon and ghost propagators related to the so-called Gribov-Zwanziger confinement scenario, originally formulated for Landau and Coulomb gauges, for other gauges as well. We present results of our investigation of SU(2) lattice gauge theory in the maximally Abelian gauge (MAG), focusing on the behavior of propagators in the off-diagonal (i.e. non-Abelian) sector. We also comment on our preliminary results for general linear covariant gauges, in particular for Feynman gauge.



قيم البحث

اقرأ أيضاً

99 - A.Y. Lokhov , C.Roiesnel 2005
We study the ultraviolet behaviour of the ghost and gluon propagators in quenched QCD using lattice simulations. Extrapolation of the lattice data towards the continuum allows to use perturbation theory to extract $Lambda_{text{QCD}}$ - the fundament al parameter of the pure gauge theory. The values obtained from the ghost and gluon propagators are coherent. The result for pure gauge SU(3) at three loops is $Lambda_{ms}approx 320text{MeV}$. However this value does depend strongly upon the order of perturbation theory and upon the renormalisation description of the continuum propagators. Moreover, this value has been obtained without taking into account possible power corrections to the short-distance behaviour of correlation functions.
Starting from the lattice Landau gauge gluon and ghost propagator data we use a sequence of Pade approximants, identify the poles and zeros for each approximant and map them into the analytic structure of the propagators. For the Landau gauge gluon p ropagator the Pade analysis identifies a pair of complex conjugate poles and a branch cut along the negative real axis of the Euclidean $p^2$ momenta. For the Landau gauge ghost propagator the Pade analysis shows a single pole at $p^2 = 0$ and a branch cut also along the negative real axis of the Euclidean $p^2$ momenta. The method gives precise estimates for the gluon complex poles, that agree well with other estimates found in the literature. For the branch cut the Pade analysis gives, at least, a rough estimate of the corresponding branch point.
466 - G. Burgio , M. Quandt , M. Schrock 2010
We discuss the gluon propagator in 3- and 4-dimensional Yang-Mills theories in Coulomb gauge and compare it with the corresponding Landau gauge propagator, showing that for both the relevant IR mass scale coincides. We also report preliminary results on Coulomb gauge ghost form factor and quark propagators and give a comment on the gluon propagators strong coupling limit.
The finite-temperature behavior of gluon and of Faddeev-Popov-ghost propagators is investigated for pure SU(2) Yang-Mills theory in Landau gauge. We present nonperturbative results, obtained using lattice simulations and Dyson-Schwinger equations. Po ssible limitations of these two approaches, such as finite-volume effects and truncation artifacts, are extensively discussed. Both methods suggest a very different temperature dependence for the magnetic sector when compared to the electric one. In particular, a clear thermodynamic transition seems to affect only the electric sector. These results imply in particular the confinement of transverse gluons at all temperatures and they can be understood inside the framework of the so-called Gribov-Zwanziger scenario of confinement.
183 - Adriano Di Giacomo 2010
The long standing problem is solved why the number and the location of monopoles observed in Lattice configurations depend on the choice of the gauge used to detect them, in contrast to the obvious requirement that monopoles, as physical objects, mus t have a gauge-invariant status. It is proved, by use of non-abelian Bianchi identities, that monopoles are indeed gauge-invariant: the technique used to detect them has instead an efficiency which depends on the choice of the abelian projection, in a known and controllable way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا