ﻻ يوجد ملخص باللغة العربية
Doped Si is a promising candidate for quantum computing due to its scalability properties, long spin coherence times, and the astonishing progress on Si technology and miniaturization in the last few decades. This proposal for a quantum computer ultimately relies on the quantum control of electrons bound to donors near a Si/barrier (e.g. SiO2) interface. We address here several important issues and define critical parameters that establish the conditions that allow the manipulation of donor electrons in Si by means of external electric and magnetic fields.
We demonstrate how gradient ascent pulse engineering optimal control methods can be implemented on donor electron spin qubits in Si semiconductors with an architecture complementary to the original Kanes proposal. We focus on the high-fidelity contro
We analyze the valley composition of one electron bound to a shallow donor close to a Si/barrier interface as a function of an applied electric field. A full six-valley effective mass model Hamiltonian is adopted. For low fields, the electron ground
Different approaches in quantifying environmentally-induced decoherence are considered. We identify a measure of decoherence, derived from the density matrix of the system of interest, that quantifies the environmentally induced error, i.e., deviatio
We propose a scheme for quantum information processing based on donor electron spins in semiconductors, with an architecture complementary to the original Kane proposal. We show that a naive implementation of electron spin qubits provides only modest
Experimental and theoretical progress toward quantum computation with spins in quantum dots (QDs) is reviewed, with particular focus on QDs formed in GaAs heterostructures, on nanowire-based QDs, and on self-assembled QDs. We report on a remarkable e