ﻻ يوجد ملخص باللغة العربية
Quantum phase transition in the one-dimensional period-two and uniform quantum compass model are studied by using the pseudo-spin transformation method and the trace map method. The exact solutions are presented, the fidelity, the nearest-neighbor pseudo-spin entanglement, spin and pseudo-spin correlation functions are then calculated. At the critical point, the fidelity and its susceptibility change substantially, the gap of pseudo-spin concurrence is observed, which scales as $1/N$ (N is system size). The spin correlation functions show smooth behavior around the critical point. In the period-two chain, the pseudo-spin correlation functions exhibit a oscillating behavior, which is absent in the unform chain. The divergent correlation length at the critical point is demonstrated in the general trend for both cases.
Based on tensor network simulations, we discuss the emergence of dynamical quantum phase transitions (DQPTs) in a half-filled one-dimensional lattice described by the extended Fermi-Hubbard model. Considering different initial states, namely noninter
In this paper, we study quantum phase transitions and magnetic properties of a one-dimensional spin-1/2 Gamma model, which describes the off-diagonal exchange interactions between edge-shared octahedra with strong spin-orbit couplings along the sawto
We consider the one-dimensional extended Hubbard model in the presence of an explicit dimerization $delta$. For a sufficiently strong nearest neighbour repulsion we establish the existence of a quantum phase transition between a mixed bond-order wave
The quantum Kibble-Zurek mechanism (QKZM) predicts universal dynamical behavior in the vicinity of quantum phase transitions (QPTs). It is now well understood for one-dimensional quantum matter. Higher-dimensional systems, however, remain a challenge
A Green-function theory for the dynamic spin susceptibility in the square-lattice spin-1/2 antiferromagnetic compass-Heisenberg model employing a generalized mean-field approximation is presented. The theory describes magnetic long-range order (LRO)