ترغب بنشر مسار تعليمي؟ اضغط هنا

From F-theory GUTs to the LHC

135   0   0.0 ( 0 )
 نشر من قبل Jonathan Heckman
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper provides an overview to three recent papers on the bottom up approach to GUTs in F-theory. We assume only a minimal familiarity with string theory and phenomenology. After explaining the potential for predictive string phenomenology within this framework, we introduce the ingredients of F-theory GUTs, and show how these models naturally address various puzzles in four-dimensional GUT models. We next describe how supersymmetry is broken, and show that in a broad class of models, solving the mu/B mu problem requires a specific scale of supersymmetry breaking consistent with a particular deformation of the gauge mediation scenario. This rigid structure enables us to reliably extract predictions for the sparticle spectrum of the MSSM. A brief sketch of expected LHC signals, as well as ways to falsify this class of models is also included.



قيم البحث

اقرأ أيضاً

We discuss F-theory SU(5) GUTs in which some or all of the quark and lepton families are assigned to different curves and family symmetry enforces a leading order rank one structure of the Yukawa matrices. We consider two possibilities for the suppre ssion of baryon and lepton number violation. The first is based on Flipped SU(5) with gauge group SU(5)times U(1)_chi times SU(4)_{perp} in which U(1)_{chi} plays the role of a generalised matter parity. We present an example which, after imposing a Z_2 monodromy, has a U(1)_{perp}^2 family symmetry. Even in the absence of flux, spontaneous breaking of the family symmetry leads to viable quark, charged lepton and neutrino masses and mixing. The second possibility has an R-parity associated with the symmetry of the underlying compactification manifold and the flux. We construct an example of a model with viable masses and mixing angles based on the gauge group SU(5)times SU(5)_{perp} with a U(1)_{perp}^3 family symmetry after imposing a Z_2 monodromy.
In this paper we study the interplay between the recently proposed F-theory GUTs and cosmology. Despite the fact that the parameter range for F-theory GUT models is very narrow, we find that F-theory GUTs beautifully satisfy most cosmological constra ints without any further restrictions. The viability of the scenario hinges on the interplay between various components of the axion supermultiplet, which in F-theory GUTs is also responsible for breaking supersymmetry. In these models, the gravitino is the LSP and develops a mass by eating the axino mode. The radial component of the axion supermultiplet known as the saxion typically begins to oscillate in the early Universe, eventually coming to dominate the energy density. Its decay reheats the Universe to a temperature of ~ 1 GeV, igniting BBN and diluting all thermal relics such as the gravitino by a factor of ~ 10^(-4) - 10^(-5) such that gravitinos contribute a sizable component of the dark matter. In certain cases, non-thermally produced relics such as the axion, or gravitinos generated from the decay of the saxion can also contribute to the abundance of dark matter. Remarkably enough, this cosmological scenario turns out to be independent of the initial reheating temperature of the Universe. This is due to the fact that the initial oscillation temperature of the saxion coincides with the freeze out temperature for gravitinos in F-theory GUTs. We also find that saxion dilution is compatible with generating the desired baryon asymmetry from standard leptogenesis. Finally, the gravitino mass range in F-theory GUTs is 10-100 MeV, which interestingly coincides with the window of values required for the decay of the NLSP to solve the problem of Li(7) over-production.
177 - George K. Leontaris 2018
In this presentation the new physics implications of the $B$-meson decay anomalies, observed at LHCb, are discussed. In the first part of the talk a brief overview of the experimental status is presented. In the second part, a class of semi-local F-t heory GUT models with additional neutral gauge bosons are proposed which are capable of accounting for the anomalous $B$-decay ratios $R_{K}$ and $R_{K^*}$
In this paper we study a deformation of gauge mediated supersymmetry breaking in a class of local F-theory GUT models where the scale of supersymmetry breaking determines the value of the mu term. Geometrically correlating these two scales constrains the soft SUSY breaking parameters of the MSSM. In this scenario, the hidden SUSY breaking sector involves an anomalous U(1) Peccei-Quinn symmetry which forbids bare mu and B mu terms. This sector typically breaks supersymmetry at the desired range of energy scales through a simple stringy hybrid of a Fayet and Polonyi model. A variant of the Giudice-Masiero mechanism generates the value mu ~ 10^2 - 10^3 GeV when the hidden sector scale of supersymmetry breaking is F^(1/2) ~ 10^(8.5) GeV. Further, the B mu problem is solved due to the mild hierarchy between the GUT scale and Planck scale. These models relate SUSY breaking with the QCD axion, and solve the strong CP problem through an axion with decay constant f_a ~ M_(GUT) * mu / L, where L ~ 10^5 GeV is the characteristic scale of gaugino mass unification in gauge mediated models, and the ratio mu / L ~ M_(GUT)/M_(pl) ~ 10^(-3). We find f_a ~ 10^12 GeV, which is near the high end of the phenomenologically viable window. Here, the axino is the goldstino mode which is eaten by the gravitino. The gravitino is the LSP with a mass of about 10^1 - 10^2 MeV, and a bino-like neutralino is (typically) the NLSP with mass of about 10^2 - 10^3 GeV. Compatibility with electroweak symmetry breaking also determines the value of tan(beta) ~ 30 +/- 7.
Motivated by potential phenomenological applications, we develop the necessary tools for building GUT models in F-theory. This approach is quite flexible because the local geometrical properties of singularities in F-theory compactifications encode t he physical content of the theory. In particular, we show how geometry determines the gauge group, matter content and Yukawa couplings of a given model. It turns out that these features are beautifully captured by a four-dimensional topologically twisted N=4 theory which has been coupled to a surface defect theory on which chiral matter can propagate. From the vantagepoint of the four-dimensional topological theory, these defects are surface operators. Specific intersection points of these defects lead to Yukawa couplings. We also find that the unfolding of the singularity in the F-theory geometry precisely matches to properties of the topological theory with a defect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا