ترغب بنشر مسار تعليمي؟ اضغط هنا

Combined microstructural and magneto optical study of current flow in polycrystalline forms of Nd and Sm Fe-oxypnictides

146   0   0.0 ( 0 )
 نشر من قبل Fumitake Kametani
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to understand why the inter- and intra-granular current densities of polycrystalline superconducting oxypnictides differ by three orders of magnitude, we have conducted combined magneto-optical and microstructural examinations of representative randomly oriented polycrystalline Nd and Sm single-layer oxypnictides. Magneto optical images show that the highest Jc values are observed within single grains oriented with their c axes perpendicular to the observation plane, implying that the intragranular current is anisotropic. The much lower intergranular Jc is at least partially due to many extrinsic factors, because cracks and a ubiquitous wetting As-Fe phase are found at many grain boundaries. However, some grain boundaries are structurally clean under high resolution transmission electron microscopy examination. Because the whole-sample global Jc(5K) values of the two samples examined are 1000-4000 A/cm2, some 10-40 times that found in random, polycrystalline YBa2Cu3O7-x, it appears that the dominant obstruction to intergranular current flow of many present samples is extrinsic, though some intrinsic limitation of current flow across grain boundaries cannot yet be ruled out.



قيم البحث

اقرأ أيضاً

Early studies have found quasi-reversible magnetization curves in polycrystalline bulk rare-earth iron oxypnictides that suggest either wide-spread obstacles to intergranular current or very weak vortex pinning. In the present study of polycrystallin e samarium and neodymium rare-earth iron oxypnictide samples made by high pressure synthesis, the hysteretic magnetization is significantly enhanced. Magneto optical imaging and study of the field dependence of the remanent magnetization as a function of particle size both show that global currents over the whole sample do exist but that the intergranular and intragranular current densities have distinctively different temperature dependences and differ in magnitude by about 1000. Assuming that the highest current density loops are restricted to circulation only within grains leads to values of ~5 MA/cm2 at 5 K and self field, while whole-sample current densities, though two orders of magnitude lower are 1000-10000 A/cm2, some two orders of magnitude higher than in random polycrystalline cuprates. We cannot yet be certain whether this large difference in global and intragrain current density is intrinsic to the oxypnictides or due to extrinsic barriers to current flow, because the samples contain significant second phase, some of which wets the grain boundaries and produces evidences of SNS proximity effect in the whole sample critical current.
We report the electrical, magneto transport and specific heat of the layered polycrystalline RECoPO (RE = La, Nd and Sm) samples. These compounds are iso-structural to recently discovered superconductor LaFeAs(O/F). Bulk polycrystalline samples are s ynthesized by solid state reaction route in an evacuated sealed quartz tube. All these compounds are crystallized in a tetragonal structure with space group P4/nmm. The Cobalt in these compounds is in itinerant state with its paramagnetic moment above 1.4muB and the same orders ferromagnetically (FM) with saturation moment of around 0.20muB below say 80K. Though, LaCoPO shows single paramagnetic (PM) to ferromagnetic (FM) transition near 35K, the NdCoPO and SmCoPO exhibit successive PM-FM-AFM transitions. Both FM and AFM transition temperatures vary with applied field. Although the itinerant ferromagnetism occurs with small saturation moment, typical anti-ferromagnetic (AFM) transitions (TN1, TN2) are observed at 69K and 14K for Nd and 57K and 45K for Sm. This FM-AFM transition of Co spins in NdCoPO and SmCoPO is both field and temperature dependent. The Magneto-transport of NdCoPO and SmCoPO distinctly follows their successive PM-FM-AFM transitions. It is clear that Sm/Nd (4f) interacts with the Co (3d) in first time synthesized Sm/NdCoPO.
The discovery of superconductivity at 39 K in MgB2[1] raises many issues. One of the central questions is whether this new superconductor resembles a high-temperature-cuprate superconductor or a low-temperature metallic superconductor in terms of its current carrying characteristics in applied magnetic fields. In spite of the very high transition temperatures of the cuprate superconductors, their performance in magnetic fields has several drawbacks[2]. Their large anisotropy restricts high bulk current densities to much less than the full magnetic field-temperature (H-T) space over which superconductivity is found. Further, weak coupling across grain boundaries makes transport current densities in untextured polycrystalline forms low and strongly magnetic field sensitive[3,4]. These studies of MgB2 address both issues. In spite of the multi-phase, untextured, nano-scale sub-divided nature of our samples, supercurrents flow throughout without the strong sensitivity to weak magnetic fields characteristic of Josephson-coupled grains[3]. Magnetization measurements over nearly all of the superconducting H-T plane show good temperature scaling of the flux pinning force, suggestive of a current density determined by flux pinning. At least two length scales are suggested by the magnetization and magneto optical (MO) analysis but the cause of this seems to be phase inhomogeneity, porosity, and minority insulating phase such as MgO rather than by weakly coupled grain boundaries. Our results suggest that polycrystalline ceramics of this new class of superconductor will not be compromised by the weak link problems of the high temperature superconductors, a conclusion with enormous significance for applications if higher temperature analogs of this compound can be discovered.
365 - F. Kametani , P. Li , D. Abraimov 2009
We report a direct current transport study of the local intergrain connections in a polycrystalline SmFeAsO0.85 (Sm1111) bulk, for which we earlier estimated significant intergranular critical current density Jc. Our combined low temperature laser sc anning microscopy (LTLSM) and scanning electron microscopy observations revealed only few grain-to-grain transport current paths, most of which switched off when a magnetic field was applied. These regions typically occur where current crosses Fe-As, which is a normal-metal wetting-phase that surrounds Sm1111 grains, producing a dense array of superconducting-normal-superconducting contacts. Our study points out the need to reduce the amount of grain boundary-wetting Fe-As phase, as well as the crack density within pnictide grains, as these defects produce a multiply connected current-blocking network.
The tetragonal-to-orthorhombic structural phase transition (SPT) in LaFeAsO (La-1111) and SmFeAsO (Sm-1111) single crystals measured by high resolution x-ray diffraction is found to be sharp while the RFeAsO (R=La, Nd, Pr, Sm) polycrystalline samples show a broad continuous SPT. Comparing the polycrystalline and the single crystal 1111 samples, the critical exponents of the SPT are found to be the same while the correlation length critical exponents are found to be very different. These results imply that the lattice fluctuations in 1111 systems change in samples with different surface to volume ratio that is assigned to the relieve of the temperature dependent superlattice misfit strain between active iron layers and the spacer layers in 1111 systems. This phenomenon that is missing in the AFe2As2 (A=Ca, Sr, Ba) 122 systems, with the same electronic structure but different for the thickness and the elastic constant of the spacer layers, is related with the different maximum superconducting transition temperature in the 1111 (55 K) versus 122 (35 K) systems and implies the surface reconstruction in 1111 single crystals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا