ﻻ يوجد ملخص باللغة العربية
For thermonuclear flashes to occur on neutron-star surfaces, fuel must have been accreted from a donor star. However, sometimes flashes are seen from transient binary systems when they are thought to be in their quiescent phase, during which no accretion, or relatively little, is expected to occur. We investigate the accretion luminosity during several such flashes, including the first-ever and brightest detected flash from Cen X-4 in 1969. We infer from observations and theory that immediately prior to these flashes the accretion rate must have been between about 0.001 and 0.01 times the equivalent of the Eddington limit, which is roughly 2 orders of magnitude less than the peak accretion rates seen in these transients during an X-ray outburst and 3-4 orders of magnitude more than the lowest measured values in quiescence. Furthermore, three such flashes, including the one from Cen X-4, occurred within 2 to 7 days followed by an X-ray outburst. A long-term episode of enhanced, but low-level, accretion is predicted near the end of the quiescent phase by the disk-instability model, and may thus have provided the right conditions for these flashes to occur. We discuss the possibility of whether these flashes acted as triggers of the outbursts, signifying a dramatic increase in the accretion rate. Although it is difficult to rule out, we find it unlikely that the irradiance by these flashes is sufficient to change the state of the accretion disk in such a dramatic way.
We present deep optical images of the historical X-ray Transient KY TrA in quiescence from which we confirm the identification of the counterpart reported by Murdin (1977) and derive an improved position of alpha=15:28:16.97 and delta=-61:52:57.8. In
We present optical photometry and spectroscopy of the X-ray transient XTE J1859+226, obtained during outburst and its subsequent decay to quiescence. Both the X-ray and optical properties are very similar to those of well-studied black hole soft X-ra
We report the detection of 15 X-ray bursts with RXTE and Swift observations of the peculiar X-ray binary Circinus X-1 during its May 2010 X-ray re-brightening. These are the first X-ray bursts observed from the source after the initial discovery by T
Type-I X-ray bursts arise from unstable thermonuclear burning of accreted fuel on the surface of neutron stars. In this chapter we review the fundamental physics of the burning processes, and summarise the observational, numerical, and nuclear experi
X-ray flashes are detected in the Wide Field Cameras on BeppoSAX in the energy range 2-25 keV as bright X-ray sources lasting of the order of minutes, but remaining undetected in the Gamma Ray Bursts Monitor on BeppoSAX. They have properties very sim