ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetric currents in a donor (D)-bridge (B)-acceptor (A) single molecule - revisit of the Aviram-Ratner diode

200   0   0.0 ( 0 )
 نشر من قبل Haiying He
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum transport via a donor (D)-bridge (B)-acceptor (A) single molecule is studied using density functional theory in conjunction with the Landauer-B{u}ttiker formalism. Asymmetric electrical response for opposite biases is observed resulting in significant rectification in current. The intrinsic dipole moment induced by substituent side groups in the molecule leads to enhanced/reduced polarization of the system under a forward/reverse applied potential, thus asymmetry in the charge distribution and the electronic current under bias. Under a forward bias, the energy gap between the D and A frontier orbitals closes and the current increases rapidly; whereas under a reverse bias, the D-A gap widens and the current remains small.



قيم البحث

اقرأ أيضاً

Carbene-metal-amides (CMAs) are a promising family of donor-bridge-acceptor molecular charge-transfer emitters for organic light-emitting diodes (OLEDs). Here a universal approach is introduced to tune the energy of their charge-transfer emission. A shift of up to 210 meV is achievable in the solid state via dilution in a polar host matrix. The origin of this shift has two components: constraint of thermally activated triplet diffusion, and electrostatic interactions between the guest molecules and the polar host. This allows the emission of mid-green CMA archetypes to be blue shifted without chemical modifications. Monte-Carlo simulations based on a Marcus-type transfer integral successfully reproduce the concentration- and temperature-dependent triplet diffusion process, and reveal a substantial shift in the ensemble density of states in polar hosts. In gold-bridged CMAs this substantial shift does not lead to a significant change in luminescence lifetime, thermal activation energy, reorganisation energy or intersystem crossing rate. These discoveries thus offer new experimental and theoretical insight in to the coupling between the singlet and triplet manifolds in these materials. Similar emission tuning can be achieved in related materials where chemical modification is used to modify the charge-transfer energy.
We have studied the transport properties of a molecular device composed of donor and acceptor moieties between two electrodes on either side. The device is considered to be one-dimensional with different on-site energies and the non-equilibrium prope rties are calculated using Landauers formalism. The current-voltage characteristics is found to be asymmetric with a sharp Negative Differential Resistance at a critical bias on one side and very small current on the other side. The NDR arises primarily due to the bias driven electronic structure change from one kind of insulating phase to another through a highly delocalized conducting phase. Our model can be considered to be the simplest to explain the experimental current-voltage characteristics observed in many molecular devices.
We show that the nuclear spin dynamics in the single-molecule magnet Mn12-ac below 1 K is governed by quantum tunneling fluctuations of the cluster spins, combined with intercluster nuclear spin diffusion. We also obtain the first experimental proof that - surprisingly - even deep in the quantum regime the nuclear spins remain in good thermal contact with the lattice phonons. We propose a simple model for how T-independent tunneling fluctuations can relax the nuclear polarization to the lattice, that may serve as a framework for more sophisticated theories.
145 - I. Weymann , J. Barnas 2008
Electronic transport through a single-wall metallic carbon nanotube weakly coupled to one ferromagnetic and one nonmagnetic lead is analyzed in the sequential tunneling limit. It is shown that both the spin and charge currents flowing through such sy stems are highly asymmetric with respect to the bias reversal. As a consequence, nanotubes coupled to one nonmagnetic and one ferromagnetic lead can be effectively used as spin diodes whose functionality can be additionally controlled by a gate voltage.
We demonstrate that rectification ratios (RR) of >250 (>1000) at biases of 0.5 V (1.2 V) are achievable at the two-molecule limit for donor-acceptor bilayers of pentacene on fullerene on Cu using scanning tunneling spectroscopy and microscopy. Using first-principles calculations, we show that the system behaves as a molecular Schottky diode with a tunneling transport mechanism from semiconducting pentacene to Cu-hybridized metallic fullerene. Low-bias RRs vary by two orders-of-magnitude at the edge of these molecular heterojunctions due to increased Stark shifts and confinement effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا