ﻻ يوجد ملخص باللغة العربية
A new approach to study the equation of state in finite-temperature QCD is proposed on the lattice. Unlike the conventional method in which the temporal lattice size $N_t$ is fixed, the temperature $T$ is varied by changing $N_t$ at fixed lattice scale. The pressure of the hot QCD plasma is calculated by the integration of the trace anomaly with respect to $T$ at fixed lattice scale. This $T$-integral method is tested in quenched QCD on isotropic and anisotropic lattices and is shown to give reliable results especially at intermediate and low temperatures.
We study the thermodynamics of the SU(3) gauge theory using the fixed-scale approach with shifted boundary conditions. The fixed-scale approach can reduce the numerical cost of the zero-temperature part in the equation of state calculations, while th
We study the equation of state in 2+1 flavor QCD with nonperturbatively improved Wilson quarks coupled with the RG-improved Iwasaki glue. We apply the $T$-integration method to nonperturbatively calculate the equation of state by the fixed-scale appr
We report on the status of our study towards the equation of state in 2+1 flavor QCD with improved Wilson quarks. To reduce the computational cost which is quite demanding for Wilson-type quarks, we adopt the fixed scale approach, i.e. the temperatur
We calculated the QCD equation of state using Taylor expansions that include contributions from up to sixth order in the baryon, strangeness and electric charge chemical potentials. Calculations have been performed with the Highly Improved Staggered
Free energies between static quarks and Debye screening masses in the quark-gluon plasma are studied on the basis of Polyakov-line correlations in lattice simulations of 2+1 flavors QCD with the renormalization-group improved gluon action and the $O(