ﻻ يوجد ملخص باللغة العربية
We report the Hall resistivity, $rho_{xy}$ of polycrystalline SmFeAsO$_{1-x}$F$_{x}$ for four different fluorine concentrations from the onset of superconductivity through the collapse of the structural phase transition. For the two more highly-doped samples, $rho_{xy}$ is linear in magnetic field up to 50 T with only weak temperature dependence, reminiscent of a simple Fermi liquid. For the lightly-doped samples with $x<0.15$, we find a low temperature regime characterized $rho_{xy}(H)$ being both non-linear in magnetic field and strongly temperature dependent even though the Hall angle is small. The onset temperature for this non-linear regime is in the vicinity of the structural phase (SPT)/spin density wave (SDW) transitions. The temperature dependence of the Hall resistivity is consistent with a thermal activation of carriers across an energy gap. The evolution of the energy gap with doping is reported.
We study the electronic structure of the SmFeAsO(1-x)F(x) alloy by means of first-principle calculations. We find that, contrary to common believe, F-doping does not change the charge balance between electrons and holes free-carriers in SmFeAsO(1-x)F
We investigated the temperature dependence of the density-of-states in the iron-based superconductor SmO_1-xF_xFeAs (x=0, 0.12, 0.15, 0.2) with high resolution angle-integrated photoemission spectroscopy. The density-of-states suppression is observed
We use neutron scattering to study the structural distortion and antiferromagnetic (AFM) order in LaFeAsO$_{1-x}$F$_{x}$ as the system is doped with fluorine (F) to induce superconductivity. In the undoped state, LaFeAsO exhibits a structural distort
The iron chalcogenide Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ on the Te-rich side is known to exhibit the strongest electron correlations among the Fe-based superconductors, and is non-superconducting for $x$ < 0.1. In order to understand the origin of such beh
Hall effect and magnetoresistance have been measured on single crystals of $NdFeAsO_{1-x}F_{x}$ with x = 0 ($T_c$ = 0 $ $K) and x = 0.18 ($T_c$ = 50 $ $K). For the undoped samples, strong Hall effect and magnetoresistance with strong temperature depe