ﻻ يوجد ملخص باللغة العربية
We search for stars with proper motions in a set of twenty deep Subaru images, covering about 0.28 square degrees to a depth of i ~ 25, taken over a span of six years. In this paper, we describe in detail our reduction and techniques to identify moving objects. We present a first sample of 99 stars with motions of high significance, and discuss briefly the populations from which they are likely drawn. Based on photometry and motions alone, we expect that 9 of the candidates may be white dwarfs. We also find a group of stars which may be extremely metal-poor subdwarfs in the halo.
We present a deep $K^{prime}$-band (2.12$mu$m) imaging of 1arcmin $times$ 1arcmin Subaru Super Deep Field (SSDF) taken with the Subaru adaptive optics (AO) system. Total integration time of 26.8 hours results in the limiting magnitude of $K^{prime} s
In order to search for high-redshift galaxies beyond $z = 6.6$ in the Subaru Deep Field, we have investigated NB921-dropout galaxies where NB921 is the narrowband filter centered at 919.6 nm with FWHM of 13.2 nm for the Suprime-Cam on the Subaru Tele
Deep near-infrared images of a blank 2x2 section of sky near the Galactic north pole taken by Subaru Telescope are presented. The total integration times of the J and K bands are 12.1 hours and 9.7 hours, resulting in 5-sigma limiting magnitudes of 2
The Subaru Deep Field (SDF) project is a program of Subaru Observatory to carry out a deep galaxy survey over a blank field as large as 34x27. The program consists of very deep multi-band optical imaging, near infrared imaging for smaller portions of
We present observations of SDF-05M05, an unusual optical transient discovered in the Subaru Deep Field (SDF). The duration of the transient is > ~800 d in the observer frame, and the maximum brightness during observation reached approximately 23 mag