ﻻ يوجد ملخص باللغة العربية
With the wide development of databases in general and data warehouses in particular, it is important to reduce the tasks that a database administrator must perform manually. The aim of auto-administrative systems is to administrate and adapt themselves automatically without loss (or even with a gain) in performance. The idea of using data mining techniques to extract useful knowledge for administration from the data themselves has existed for some years. However, little research has been achieved. This idea nevertheless remains a very promising approach, notably in the field of data warehousing, where queries are very heterogeneous and cannot be interpreted easily. The aim of this study is to search for a way of extracting useful knowledge from stored data themselves to automatically apply performance optimization techniques, and more particularly indexing techniques. We have designed a tool that extracts frequent itemsets from a given workload to compute an index configuration that helps optimizing data access time. The experiments we performed showed that the index configurations generated by our tool allowed performance gains of 15% to 25% on a test database and a test data warehouse.
Frequent Subgraph Mining (FSM) is the key task in many graph mining and machine learning applications. Numerous systems have been proposed for FSM in the past decade. Although these systems show good performance for small patterns (with no more than
Frequent-pattern mining is a common approach to reveal the valuable hidden trends behind data. However, existing frequent-pattern mining algorithms are designed for DRAM, instead of persistent memories (PMs), which can lead to severe performance and
Frequent itemset mining is a popular data mining technique. Apriori, Eclat, and FP-Growth are among the most common algorithms for frequent itemset mining. Considerable research has been performed to compare the relative performance between these thr
A new stream of research was born in the last decade with the goal of mining itemsets of interest using Constraint Programming (CP). This has promoted a natural way to combine complex constraints in a highly flexible manner. Although CP state-of-the-
FP-Growth algorithm is a Frequent Pattern Min- ing (FPM) algorithm that has been extensively used to study correlations and patterns in large scale datasets. While several researchers have designed distributed memory FP-Growth algorithms, it is pivot