ﻻ يوجد ملخص باللغة العربية
We use high-quality VLA images of the Fanaroff & Riley Class I radio galaxy 3C 31 at six frequencies in the range 1365 to 8440MHz to explore the spatial scale and origin of the rotation measure (RM) fluctuations on the line of sight to the radio source. We analyse the distribution of the degree of polarization to show that the large depolarization asymmetry between the North and South sides of the source seen in earlier work largely disappears as the resolution is increased. We show that the depolarization seen at low resolution results primarily from unresolved gradients in a Faraday screen in front of the synchrotron-emitting plasma. We establish that the residual degree of polarization in the short-wavelength limit should follow a Burn law and we fit such a law to our data to estimate the residual depolarization at high resolution. We show that the observed RM variations over selected areas of 3C 31 are consistent with a power spectrum of magnetic fluctuations in front of 3C 31 whose power-law slope changes significantly on the scales sampled by our data. The power spectrum can only have the form expected for Kolmogorov turbulence on scales <5 kpc. On larger scales we find a flatter slope. We also compare the global variations of RM across 3C 31 with the results of three-dimensional simulations of the magnetic-field fluctuations in the surrounding magnetoionic medium. We show that our data are consistent with a field distribution that favours the plane perpendicular to the jet axis - probably because the radio source has evacuated a large cavity in the surrounding medium. We also apply our analysis techniques to the case of Hydra A, where the shape and the size of the cavities produced by the source in the surrounding medium are known from X-ray data. (Abridged)
The goal of this work is to constrain the strength and structure of the magnetic field associated with the environment of the radio source 3C 449, using observations of Faraday rotation, which we model with a structure function technique and by compa
We present high-quality VLA images of the FR I radio galaxy 3C 31 in the frequency range 1365 to 8440 MHz with angular resolutions from 0.25 to 40 arcsec. Our new images reveal complex, well resolved filamentary substructure in the radio jets and tai
We present a deep, low-frequency radio continuum study of the nearby Fanaroff--Riley class I (FR I) radio galaxy 3C 31 using a combination of LOw Frequency ARray (LOFAR; 30--85 and 115--178 MHz), Very Large Array (VLA; 290--420 MHz), Westerbork Synth
We present an analysis of the magnetic-field fluctuations in the magnetoionic medium in front of the radio galaxy 3C 31 derived from rotation-measure (RM) fits to high-resolution polarization images. We first show that the Faraday rotation must be du
In this paper we analyze the relation between radio, optical continuum and Halpha+[NII] emission from the cores of a sample of 21 nearby Fanaroff & Riley type I galaxies as observed with the VLBA and HST. The emission arises inside the inner tens of