ﻻ يوجد ملخص باللغة العربية
We create a catalogue of simulated fossil groups and study their properties, in particular the merging histories of their first-ranked galaxies. We compare the simulated fossil group properties with those of both simulated non-fossil and observed fossil groups. Using simulations and a mock galaxy catalogue, we searched for massive ($>$ 5 $times$ 10$^{13} h^{-1} {cal M}_odot$) fossil groups in the Millennium Simulation Galaxy Catalogue. In addition, attempted to identify observed fossil groups in the Sloan Digital Sky Survey Data Release 6 using identical selection criteria. Our predictions on the basis of the simulation data are:(a) fossil groups comprise about 5.5% of the total population of groups/clusters with masses larger than 5 x 10$^{13} h^{-1} {cal M}_odot$. This fraction is consistent with the fraction of fossil groups identified in the SDSS, after all observational biases have been taken into account; (b) about 88% of the dominant central objects in fossil groups are elliptical galaxies that have a median R-band absolute magnitude of $sim -23.5-5 log h$, which is typical of the observed fossil groups known in the literature; (c)first-ranked galaxies of systems with $ {cal M} >$ 5 x 10$^{13} h^{-1} {cal M}_odot$, regardless of whether they are either fossil or non-fossil, are mainly formed by gas-poor mergers; (d) although fossil groups, in general, assembled most of their virial masses at higher redshifts in comparison with non-fossil groups, first-ranked galaxies in fossil groups merged later, i.e. at lower redshifts, compared with their non-fossil-group counterparts. We therefore expect to observe a number of luminous galaxies in the centres of fossil groups that show signs of a recent major merger.
Fossil systems are defined to be X-ray bright galaxy groups with a 2-magnitude difference between their two brightest galaxies within half the projected virial radius,and represent an interesting extreme of the population of galaxy agglomerations.How
The Millennium N-body simulation and the Sloan Digital Sky Survey seventh data release (SDSS DR7) galaxy and galaxy group catalogues are compared to study the properties of galaxy groups and the distribution of galaxies in groups. We construct mock g
Numerical simulations as well as optical and X-ray observations over the last few years have shown that poor groups of galaxies can evolve to what is called a fossil group. Dynamical friction as the driving process leads to the coalescence of individ
We detected 10 compact galaxy groups (CGs) at $z=0$ in the semi-analytic galaxy catalog of Guo et al. (2011) for the milli-Millennium Cosmological Simulation (sCGs in mGuo2010a). We aimed to identify potential canonical pathways for compact group evo
We review the formation and evolution of fossil groups and clusters from both the theoretical and the observational points of view. In the optical band, these systems are dominated by the light of the central galaxy. They were interpreted as old syst