ترغب بنشر مسار تعليمي؟ اضغط هنا

The Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey : I. The Survey Design and First Results on Cl 0023+0423 at z = 0.84 and RX J1821.6+6827 at z = 0.82

417   0   0.0 ( 0 )
 نشر من قبل Lori M. Lubin
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the Observations of Redshift Evolution in Large Scale Environments (ORELSE) survey, a systematic search for structure on scales greater than 10 Mpc around 20 well-known clusters at 0.6 < z < 1.3. We describe the survey design, the cluster sample, and our extensive observational data covering at least 25 around each target cluster. We use adaptively-smoothed red galaxy density maps from our wide-field optical imaging to identify candidate groups/clusters and intermediate-density large scale filaments/walls in each cluster field. Because photometric techniques can be highly uncertain, the crucial component of this survey is the unprecedented amount of spectroscopic coverage. We are using the wide-field, multi-object spectroscopic capabilities of the DEep Multi-Object Imaging Spectrograph to obtain 100-200+ confirmed cluster members in each field. Our survey has already discovered the Cl 1604 supercluster at z = 0.9. Here, we present the results on two additional clusters, Cl 0023+0423 at z = 0.84 and RX J1821.6+6827 at z = 0.82. The optically-selected Cl 0023+0423 is a four-way group-group merger with constituent groups having velocity dispersions between 206-479 km/s. The galaxy population is dominated by blue, star-forming galaxies, with a substantial contribution from recent starbursts. In contrast, the X-ray-selected RX J1821.6+6827 is a largely-isolated, massive cluster with a measured velocity dispersion of 926 +/- 77 km/s. The cluster exhibits a well defined red sequence with a large quiescent galaxy population. The results from these two targets, along with preliminary findings on other ORELSE clusters, suggest that optical selection may be more effective than X-ray surveys at detecting less-evolved, dynamically-active systems at these redshifts. [Abridged]



قيم البحث

اقرأ أيضاً

Postststarburst (K+A) galaxies are candidates for galaxies in transition from a star-forming phase to a passively-evolving phase. We have spectroscopically identified large samples of K+A galaxies both in the SDSS at z~0.1 and in the DEEP2 survey at z~0.8, using a robust selection method based on a cut in Hbeta emission rather than the more problematic [OII] 3727. Based on measurements of the overdensity of galaxies around each object, we find that K+A galaxies brighter than 0.4L*_B at low-z have a similar, statistically indistinguishable environment distribution as blue galaxies, preferring underdense environments, but dramatically different from that of red galaxies. However, at higher-z, the environment distribution of K+A galaxies is more similar to red galaxies than to blue galaxies. We conclude that the quenching of star formation and the build-up of the red sequence through the K+A phase is happening in relatively overdense environments at z~1 but in relatively underdense environments at z~0. Although the relative environments where quenching occurs are decreasing with time, the corresponding absolute environment may have stayed the same along with the quenching mechanisms, because the mean absolute environments of all galaxies has to grow with time. In addition, we do not find any significant dependence on luminosity in the environment distribution of K+As. The existence of a large K+A population in the field at both redshifts indicates that cluster-specific mechanisms cannot be the dominant route by which these galaxies are formed. We also demonstrates that studying K+A-environment relations by measuring the K+A fraction in different environments is highly non-robust. Statistical comparisons of the overall environment distributions of different populations are much better behaved.
Recent hydrodynamic simulations and observations of radio jets have shown that the surrounding environment has a large effect on their resulting morphology. To investigate this we use a sample of 50 Extended Radio Active Galactic Nuclei (ERAGN) detec ted in the Observations of Redshift Evolution in Large Scale Environments (ORELSE) survey. These sources are all successfully cross-identified to galaxies within a redshift range of $0.55 leq z leq 1.35$, either through spectroscopic redshifts or accurate photometric redshifts. We find that ERAGN are more compact in high-density environments than those in low-density environments at a significance level of 4.5$sigma$. Among a series of internal properties under our scrutiny, only the radio power demonstrates a positive correlation with their spatial extent. After removing the possible radio power effect, the difference of size in low- and high-density environments persists. In the global environment analyses, the majority (86%) of high-density ERAGN reside in the cluster/group environment. In addition, ERAGN in the cluster/group central regions are preferentially compact with a small scatter in size, compared to those in the cluster/group intermediate regions and fields. In conclusion, our data appear to support the interpretation that the dense intracluster gas in the central regions of galaxy clusters plays a major role in confining the spatial extent of radio jets.
49 - Lori M. Lubin 2003
We present the first detailed X-ray observations of optically-selected clusters at high redshift. Two clusters, Cl 1324+3011 at z = 0.76 and Cl 1604+4304 at z = 0.90, were observed with XMM-Newton. The optical center of each cluster is coincident wit h an extended X-ray source whose emission is detected out to a radius of 0.5 Mpc. The emission from each cluster appears reasonably circular, with some indication of asymmetries and more complex morphologies. Similarly to other optically-selected clusters at redshifts of z > 0.4, both clusters are modest X-ray emitters with bolometric luminosities of only Lx = 1.4 - 2.0 x 10^(44) erg/s. We measure gas temperatures of T = 2.88 (+0.71/-0.49) keV for Cl 1324+3011 and 2.51 (+1.05/-0.69) keV for Cl 1604+4304. The X-ray properties of both clusters are consistent with the high-redshift Lx-T relation measured from X-ray-selected samples at z > 0.5. However, based on the local relations, their X-ray luminosities and temperatures are low for their measured velocity dispersions (sigma). The clusters are cooler by a factor of 2 - 9 compared to the local sigma-T relation. We briefly discuss the possible explanations for these results.
We present the KMOS^3D survey, a new integral field survey of over 600 galaxies at 0.7<z<2.7 using KMOS at the Very Large Telescope (VLT). The KMOS^3D survey utilizes synergies with multi-wavelength ground and space-based surveys to trace the evoluti on of spatially-resolved kinematics and star formation from a homogeneous sample over 5 Gyrs of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass ($M_*$) and rest-frame $(U-V)-M_*$ planes uniformly. We describe the selection of targets, the observations, and the data reduction. In the first year of data we detect Halpha emission in 191 $M_*=3times10^{9}-7times10^{11}$ Msun galaxies at z=0.7-1.1 and z=1.9-2.7. In the current sample 83% of the resolved galaxies are rotation-dominated, determined from a continuous velocity gradient and $v_{rot}/sigma>1$, implying that the star-forming main sequence (MS) is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Halpha kinematic maps indicate at least ~70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous IFS studies at z>0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km/s at z~2.3 to 25 km/s at z~0.9 while the rotational velocities at the two redshifts are comparable. Combined with existing results spanning z~0-3, disk velocity dispersions follow an approximate (1+z) evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally-stable disk theory.
124 - P. Tummuangpak 2013
We use observations and simulation to study the relationship between star-forming galaxies and the intergalactic medium at z~3. The observed galaxy sample is based on spectroscopic redshift data from a combination of the VLT LBG Redshift Survey and K eck observations in fields centred on bright z>3 QSOs, whilst the simulation data is taken from GIMIC. In the simulation, we find that the dominant peculiar velocities are in the form of large-scale coherent motions of gas and galaxies. Gravitational infall of galaxies towards one another is also seen. At smaller scales, the peculiar velocities in the simulation over-predict the difference between the simulated real- and z-space galaxy correlation functions. Peculiar velocity pairs separated by <1Mpc/h have a smaller dispersion and explain the z-space correlation function better. The Ly{alpha} auto- and cross-correlation functions in the GIMIC simulation show infall smaller than implied by previous work. This reduced infall may be due to the galaxy wide outflows implemented in the simulation. The main challenge in comparing these simulated results with the observed correlation functions comes from the presence of velocity errors for the observed LBGs which dominate at ~1Mpc/h scales. When these are taken into account, the observed LBG correlation function is well matched by a simulated $M_*>10^9M_odot$ galaxy sample. The simulated cross-correlation shows similar neutral gas densities around galaxies as are seen in the observations. The simulated and observed Ly{alpha} z-space autocorrelation functions agree well with each other. Our overall conclusion is that gas and galaxy peculiar velocities are towards the low end of expectation. Finally, little direct evidence is seen in either simulation or observations for high transmission near galaxies due to feedback. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا