ترغب بنشر مسار تعليمي؟ اضغط هنا

Obscured star formation in intermediate-density environments: A Spitzer study of the Abell 901/902 supercluster

252   0   0.0 ( 0 )
 نشر من قبل Anna Gallazzi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Gallazzi




اسأل ChatGPT حول البحث

We explore the amount of obscured star-formation as a function of environment in the A901/902 supercluster at z=0.165 in conjunction with a field sample drawn from the A901 and CDFS fields, imaged with HST as part of the STAGES and GEMS surveys. We combine the COMBO-17 near-UV/optical SED with Spitzer 24um photometry to estimate both the unobscured and obscured star formation in galaxies with Mstar>10^{10}Msun. We find that the star formation activity in massive galaxies is suppressed in dense environments, in agreement with previous studies. Yet, nearly 40% of the star-forming galaxies have red optical colors at intermediate and high densities. These red systems are not starbursting; they have star formation rates per unit stellar mass similar to or lower than blue star-forming galaxies. More than half of the red star-forming galaxies have low IR-to-UV luminosity ratios, relatively high Sersic indices and they are equally abundant at all densities. They might be gradually quenching their star-formation, possibly but not necessarily under the influence of gas-removing environmental processes. The other >40% of the red star-forming galaxies have high IR-to-UV luminosity ratios, indicative of high dust obscuration. They have relatively high specific star formation rates and are more abundant at intermediate densities. Our results indicate that while there is an overall suppression in the star-forming galaxy fraction with density, the small amount of star formation surviving the cluster environment is to a large extent obscured, suggesting that environmental interactions trigger a phase of obscured star formation, before complete quenching.



قيم البحث

اقرأ أيضاً

135 - I. Marinova 2008
In dense clusters, higher densities at early epochs as well as physical processes, such as ram pressure stripping and tidal interactions become important, and can have direct consequences for the evolution of bars and their host disks. To study bars and disks as a function of environment, we are using the STAGES ACS HST survey of the Abell 901/902 supercluster (z~0.165), along with earlier field studies based the SDSS and the Ohio State University Bright Spiral Galaxy Survey (OSUBSGS). We explore the limitations of traditional methods for characterizing the bar fraction, and in particular highlight uncertainties in disk galaxy selection in cluster environments. We present an alternative approach for exploring the proportion of bars, and investigate the properties of bars as a function of host galaxy color, Sersic index, stellar mass, star formation rate (SFR), specific SFR, and morphology.
We present a morphological study of galaxies in the A901/902 supercluster from the COMBO-17 survey. A total of 570 galaxies with photometric redshifts in the range 0.155 < z_phot < 0.185 are visually classified by three independent classifiers to M_V =-18. These morphological classifications are compared to local galaxy density, distance from the nearest cluster centre, local surface mass density from weak lensing, and photometric classification. At high local galaxy densities, log(Sigma_10 /Mpc^2) > 1.5, a classical morphology-density relation is found. A correlation is also found between morphology and local projected surface mass density, but no trend is observed with distance to the nearest cluster. This supports the finding that local environment is more important to galaxy morphology than global cluster properties. The breakdown of the morphological catalogue by colour shows a dominance of blue galaxies in the galaxies displaying late-type morphologies and a corresponding dominance of red galaxies in the early-type population. Using the 17-band photometry from COMBO-17, we further split the supercluster red sequence into old passive galaxies and galaxies with young stars and dust according to the prescription of Wolf et al. (2005). We find that the dusty star-forming population describes an intermediate morphological group between late-type and early-type galaxies, supporting the hypothesis that field and group spiral galaxies are transformed into S0s and, perhaps, ellipticals during cluster infall.
We present a high resolution dark matter reconstruction of the z=0.165 Abell 901/902 supercluster from a weak lensing analysis of the HST STAGES survey. We detect the four main structures of the supercluster at high significance, resolving substructu re within and between the clusters. We find that the distribution of dark matter is well traced by the cluster galaxies, with the brightest cluster galaxies marking out the strongest peaks in the dark matter distribution. We also find a significant extension of the dark matter distribution of Abell 901a in the direction of an infalling X-ray group Abell 901alpha. We present mass, mass-to-light and mass-to-stellar mass ratio measurements of the structures and substructures that we detect. We find no evidence for variation of the mass-to-light and mass-to-stellar mass ratio between the different clusters. We compare our space-based lensing analysis with an earlier ground-based lensing analysis of the supercluster to demonstrate the importance of space-based imaging for future weak lensing dark matter observations.
48 - M.E. Gray 2003
We investigate correlations between the location of galaxies in dense environments and their degree of star-formation activity. Using photometric redshifts and spectral classifications from the unique 17-band COMBO-17 survey we are able to precisely isolate galaxies from the Abell 901/902 supercluster within a thin redshift slice around z=0.16. We compare the detailed photometric properties of the supercluster galaxies with the underlying dark matter density field as revealed by weak gravitational lensing. We find strong evidence for segregation by type, with the highest density regions populated almost exclusively by galaxies classified according to their rest-frame U-V colours as quiescent. We also observe a threshold surface mass density from lensing, kappasim 0.05 (corresponding to a physical density Sigma = 2.5x10^(14)h M_sun Mpc^(-2)), above which star-formation activity is rapidly suppressed. This abrupt transformation affects primarily the faint end of the star-forming galaxy population and occurs at a local surface number density corresponding to roughly 400h^2 Mpc^(-2) to a limit of M*_V+6. When only galaxies brighter than M*+1 are considered the trends with environment remain, but are more gradual and extend beyond 2h^(-1) Mpc radius.
We derive rotation curves from optical emission lines of 182 disk galaxies (96 in the cluster and 86 in the field) in the region of Abell 901/902 located at $zsim 0.165$. We focus on the analysis of B-band and stellar-mass Tully-Fisher relations. We examine possible environmental dependencies and differences between normal spirals and dusty red galaxies, i.e. disk galaxies that have red colors due to relatively low star formation rates. We find no significant differences between the best-fit TF slope of cluster and field galaxies. At fixed slope, the field population with high-quality rotation curves (57 objects) is brighter by $Delta M_{B}=-0fm42pm0fm15$ than the cluster population (55 objects). We show that this slight difference is at least in part an environmental effect. The scatter of the cluster TFR increases for galaxies closer to the core region, also indicating an environmental effect. Interestingly, dusty red galaxies become fainter towards the core at given rotation velocity (i.e. total mass). This indicates that the star formation in these galaxies is in the process of being quenched. The luminosities of normal spiral galaxies are slightly higher at fixed rotation velocity for smaller cluster-centric radii. Probably these galaxies are gas-rich (compared to the dusty red population) and the onset of ram-pressure stripping increases their star-formation rates. The results from the TF analysis are consistent with and complement our previous findings. Dusty red galaxies might be an intermediate stage in the transformation of infalling field spiral galaxies into cluster S0s, and this might explain the well-known increase of the S0 fraction in galaxy clusters with cosmic time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا