ﻻ يوجد ملخص باللغة العربية
Positronium is an ideal system for the research of the bound state QED. New precise measurement of orthopositronium decay rate has been performed with an accuracy of 150 ppm. This result is consistent with the last three results and also the 2nd order correction. The result combined with the last three is 7.0401$pm0.0007mu mathrm{sec}^{-1}$ (100 ppm), which is consistent with the 2nd order correction and differs from the 1st order calculation by 2.6$sigma$ It is the first test to validate the 2nd order correction.
The intrinsic decay rate of orthopositronium formed in ${rm SiO_2}$ powder is measured using the direct $2gamma$ correction method such that the time dependence of the pick-off annihilation rate is precisely determined. The decay rate of orthopositro
The order - alpha radiative corrections to the differential decay rate of polarized orthopositronium are obtained. Their influences on the three photons coincidence rate as a function of positronium polarization is considered.
Recently, much work has been devoted to the calculation of order $alpha$ corrections to the decay rate of pionium, the $pi^+ pi^-$ bound state. In previous calculations, nonrelativistic QED corrections were neglected since they start at order $alpha^
The intrinsic decay rate of orthopositronium (o-Ps) formed in SiO_2 powder was measured using a modified method which determined the time dependence of the pick-off annihilation rate using high-energy-resolution germanium detectors. That is, the main
Positronium is an ideal system for the research of the bound state QED. New precise measurement of orthopositronium decay rate has been performed with an accuracy of 150 ppm, and the result combined with the last three is 7.0401 +- 0.0007 mu s^-1. It