ترغب بنشر مسار تعليمي؟ اضغط هنا

Jahn-Teller Inactivity and Magnetic Frustration in GeCo$_2$O$_4$ Probed by Ultrasound Velocity Measurements

157   0   0.0 ( 0 )
 نشر من قبل Tadataka Watanabe
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultrasound velocity measurements of cubic spinel GeCo$_2$O$_4$ in single crystal were performed for the investigation of shear and compression moduli. The shear moduli in the paramagnetic state reveal an absence of Jahn-Teller activity despite the presence of orbital degeneracy in the Co$^{2+}$ ions. Such a Jahn-Teller inactivity indicates that the intersite orbital-orbital interaction is much stronger than the Jahn-Teller coupling. The compression moduli in the paramagnetic state near the N$acute{e}$el temperature $T_N$ reveal that the most relevant exchange path for the antiferromagnetic transition lies in the [111] direction. This exchange-path anisotropy is consistent with the antiferromagnetic structure with the wave vector $q parallel$ [111], suggesting the presence of bond frustration due to competition among a direct ferromagnetic and several distant-neighbors antiferromagnetic interactions. In the JT-inactive condition, the bond frustration can be induced by geometrical orbital frustration of $t_{2g}$-$t_{2g}$ interaction between the Co$^{2+}$ ions which can be realized in the pyrochlore lattice of the high spin Co$^{2+}$ with $t_{2g}$-orbital degeneracy. In GeCo$_2$O$_4$, the tetragonal elongation below $T_N$ releases the orbital frustration by quenching the orbital degeneracy.



قيم البحث

اقرأ أيضاً

We report single-crystal neutron diffraction studies on a spinel antiferromagnet GeCo$_2$O$_4$, which exhibits magnetic order with a trigonal propagation vector and tetragonal lattice expansion ($c/asimeq1.001$) below $T_{rm N}=21$ K. For this incons istency between spin and lattice in symmetry, magnetic Bragg reflections with a tetragonal propagation vector were discovered below $T_{rm N}$. We discuss spin and orbital states of Co$^{2+}$ ion underlying the new magnetic component.
A systematic study using neutron diffraction and magnetic susceptibility are reported on Mn substituted ferrimagnetic inverse spinel Ti$_{1-x}$Mn$_{x}$Co$_2$O$_4$ in the temperature interval 1.6 K $leq$ $T$ $leq$ 300 K. Our neutron diffraction study reveals cooperative distortions of the $T$O$_6$ octahedral for all the Jahn-Teller active ions $T$ = Mn$^{3+}$, Ti$^{3+}$ and Co$^{3+}$, which are confirmed by the X-ray photoelectron spectroscopy. Two specific compositions ($x$ = 0.2 and 0.4) have been chosen because of their unique features: noncollinear Yafet-Kittel type ordering, and weak tetragonal distortion with ${c/a}$ $<$ 1, in which the apical bond length $d_c$($T_B$-O) is longer than the equatorial $d_{ab}$($T_B$-O) due to the splitting of the $e_g$ level of Mn$^{3+}$ ions into $d_{x^2-y^2}$ and $d_{z^2}$. For $x$ = 0.4, the distortion in the $T_B$O$_6$ octahedra is stronger as compared to $x$ = 0.2 because of the higher content of trivalent Mn. Ferrimagnetic ordering in $x$ = 0.4 and $x$ = 0.2 sets in at 110.3 and 78.2 K, respectively due to the unequal magnetic moments of cations, where Ti$^{3+}$, Mn$^{3+}$, and Co$^{3+}$ occupying the octahedral, whereas, Co$^{2+}$ sits in the tetrahedral site. In addition, weak antiferromagnetic component could be observed lying perpendicular to the ferrimagnetic component. The analysis of static and dynamic magnetic susceptibilities combined with the heat-capacity data reveals a magnetic compensation phenomenon at $T_{COMP}$ = 25.4 K in $x$ = 0.2 and a reentrant spin-glass behaviour in $x$ = 0.4 with a freezing temperature $sim$110.1 K. The compensation phenomenon is characterized by sign reversal of magnetization and bipolar exchange bias effect below $T_{COMP}$ with its magnitude depending on the direction of external magnetic field and the cooling protocol.
Ultrasound velocity measurements of magnesium chromite spinel MgCr$_2$O$_4$ reveal elastic anomalies in the paramagnetic phase that are characterized as due to geometrical frustration. The temperature dependence of the tetragonal shear modulus $(C_{1 1}-C_{12})/2$ exhibits huge Curie-type softening, which should be the precursor to spin Jahn-Teller distortion in the antiferromagnetic phase. The trigonal shear modulus $C_{44}$ exhibits nonmonotonic temperature dependence with a characteristic minimum at $sim$50 K, indicating a coupling of the lattice to dynamical molecular spin state. These results strongly suggest the coexistence of dynamical spin Jahn-Teller effect and dynamical molecular spin state in the paramagnetic phase, which is compatible with the coexistence of magnetostructural order and dynamical molecular spin state in the antiferromagnetic phase.
Ultrasound velocity measurements of the orbitally-frustrated GeCo$_2$O$_4$ reveal unusual elastic instabilities due to the phonon-spin coupling within the antiferromagnetic phase. Shear moduli exhibit anomalies arising from the coupling to short-rang e ferromagnetic excitations. Diplike anomalies in the magnetic-field dependence of elastic moduli reveal magnetic-field-induced orbital order-order transitions. These results strongly suggest the presence of geometrical orbital frustration which causes novel orbital phenomena within the antiferromagnetic phase.
In the spinel compound GeCo$_2$O$_4$, the Co$^{2+}$ pyrochlore sublattice presents remarkable magnetic field-induced behaviors that we unveil through neutron and X-ray single-crystal diffraction. The Neel ordered magnetic phase is entered through a s tructural lowering of the cubic symmetry. In this phase, when a magnetic field is applied along a 2-fold cubic direction, a spin-flop transition of one fourth of the magnetic moments releases the magnetic frustration and triggers magnetostructural effects. At high field, these ultimately lead to an unusual spin reorientation associated to structural changes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا