ﻻ يوجد ملخص باللغة العربية
40Ca+40,48Ca,46Ti reactions at 25 MeV/A have been studied using the 4p CHIMERA detector. An isospin effect on the competition between incomplete fusion and dissipative binary reaction mechanisms has been observed. The probability of producing a compound system is observed to be lower in the case of N=Z colliding systems as compared to the case of reactions induced on the more neutron rich 48Ca target. Predictions based on CoMD-II calculations show that the competition between fusion-like and dissipative reactions, for the selected centrality, can strongly constraint the parameterization of symmetry energy and its density dependence in the nuclear equation of state.
Small-angle, two-particle correlation functions have been measured for 36Ar+ 112,124Sn collisions at E/A = 61 MeV. Total momentum gated neutron-proton (np) and proton-proton (pp) correlations are stronger for the 124Sn-target. Some of the correlation
Double differential cross sections (DDCS) for light charged particles (proton, deuteron, triton, 3He, alpha) and neutrons produced by a proton beam impinging on a 238U target at 62.9 MeV were measured at the CYCLONE facility in Louvain-la-Neuve (Belg
Isospin diffusion is probed as a function of the dissipated energy by studying two systems $^{58}$Ni+$^{58}$Ni and $^{58}$Ni+$^{197}$Au, over the incident energy range 52-74AM. Experimental data are compared with the results of a microscopic transpor
Equilibration and equilibration rates have been measured by colliding Sn nuclei with different isospin asymmetries at beam energies of E/A=35 MeV. Using the yields of mirror nuclei of 7Li and 7Be, we have studied the diffusion of isospin asymmetry by
Using symmetric 112Sn+112Sn, 124Sn+124Sn collisions as references, we probe isospin diffusion in peripheral asymmetric 112Sn+124Sn, 124Sn+112Sn systems at incident energy of E/A=50 MeV. Isoscaling analyses imply that the quasi-projectile and quasi-ta