ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended Emission-Line Regions: Remnants of Quasar Superwinds?

156   0   0.0 ( 0 )
 نشر من قبل Hai Fu
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We give an overview of our recent integral-field-unit spectroscopy of luminous extended emission-line regions (EELRs) around low-redshift quasars, including new observations of 5 fields. Previous work has shown that the most luminous EELRs are found almost exclusively around steep-spectrum radio-loud quasars, with apparently disordered global velocity fields, and little, if any, morphological correlation with either the host-galaxy or the radio structure. Our new observations confirm and expand these results. The EELRs often show some clouds with velocities exceeding 500 km/s, ranging up to 1100 km/s, but the velocity dispersions, with few exceptions, are in the 30-100 km/s range. Emission-line ratios show that the EELRs are clearly photoionized by the quasars. Masses of the EELRs range up to >10^10 Msun. Essentially all of the EELRs show relatively low metallicities, and they are associated with quasars that, in contrast to most, show similarly low metallicities in their broad-line regions. The two objects in our sample that do not have classical double-lobed radio morphologies (3C48, with a compact-steep-spectrum source; Mrk1014, radio-quiet, but with a weak compact-steep-spectrum source) are the only ones that appear to have recent star formation. While some of the less-luminous EELRs may have other origins, the most likely explanation for the ones in our sample is that they are examples of gas swept out of the host galaxy by a large-solid-angle blast wave accompanying the production of the radio jets. The triggering of the quasar activity is almost certainly the result of the merger of a gas-rich galaxy with a massive, gas-poor galaxy hosting the supermassive black hole.



قيم البحث

اقرأ أيضاً

611 - Hai Fu , Alan Stockton 2007
We present a correlation between the presence of luminous extended emission-line regions (EELRs) and the metallicity of the broad-line regions (BLRs) of low-redshift quasars. The result is based on ground-based [O III] 5007 narrow-band imaging and Hu bble Space Telescope UV spectra of 12 quasars at 0.20 < z < 0.45. Quasars showing luminous EELRs have low-metallicity BLRs (Z < 0.6 Z_Solar), while the remaining quasars show typical metal-rich gas (Z > Z_Solar). Previous studies have shown that EELRs themselves also have low metallicities (Z < 0.5 Z_Solar). The correlation between the occurrence of EELRs and the metallicity of the BLRs, strengthened by the sub-Solar metallicity in both regions, indicates a common external origin for the gas, almost certainly from the merger of a gas-rich galaxy. Our results provide the first direct observational evidence that the gas from a merger can indeed be driven down to the immediate vicinity (< 1 pc) of the central black hole.
We present the results of spectroscopic and imaging observations of the FRII radio galaxies PKS2250-41 and PKS1932-46. Both sources display very extensive emission line regions, and appear to be undergoing interactions with companion bodies. In addit ion to disturbed gas kinematics associated with interactions with the radio source, the more distant emitting material displays simple, narrow emission line profiles, often at significant velocity offsets from the system rest-frame, and may be associated with tidal debris.
109 - Hai Fu , Alan Stockton 2006
Luminous extended emission-line regions (EELRs) on kpc scales surround a substantial fraction of steep-spectrum radio-loud QSOs. Although their existence has been known for over three decades, there are still major uncertainties on the physical proce sses responsible for their complex morphology and kinematics. We are obtaining deep integral field spectroscopy for a sample of EELRs around QSOs at z<0.5 with the Integral Field Unit (IFU) of the GMOS on the Gemini North telescope, aiming at extracting accurate kinematics of the EELRs, measuring important physical parameters (e.g., density, temperature, metallicity) and reliable intensity ratios of diagnostic emission lines from individual clouds that comprise an EELR. Here we present results from the observations of the EELR of quasar 4C 37.43. We show maps of gas kinematics measured from the [O III] 5007 line and line-ratio diagnostic diagrams comparing the data with predictions from ionization models. We find that the ionized gas shows rather complex global kinematics, while linear velocity gradients are often seen in individual clouds. Pure photoionization by the QSO continuum is the most likely ionization mechanism for most of the EELR clouds.
The flux ratios of high-ionization lines are commonly assumed to indicate the metallicity of the broad emission line region in luminous quasars. When accounting for the variation in their kinematic profiles, we show that the NV/CIV, (SiIV+OIV])/CIV a nd NV/Lya line ratios do not vary as a function of the quasar continuum luminosity, black hole mass, or accretion rate. Using photoionization models from CLOUDY , we further show that the observed changes in these line ratios can be explained by emission from gas with solar abundances, if the physical conditions of the emitting gas are allowed to vary over a broad range of densities and ionizing fluxes. The diversity of broad line emission in quasar spectra can be explained by a model with emission from two kinematically distinct regions, where the line ratios suggest that these regions have either very different metallicity or density. Both simplicity and current galaxy evolution models suggest that near-solar abundances, with parts of the spectrum forming in high-density clouds, are more likely. Within this paradigm, objects with stronger outflow signatures show stronger emission from gas which is denser and located closer to the ionizing source, at radii consistent with simulations of line-driven disc-winds. Studies using broad-line ratios to infer chemical enrichment histories should consider changes in density and ionizing flux before estimating metallicities.
Outflows are a pervasive feature of mechanical feedback from super star clusters (SSC) in starburst galaxies, playing a fundamental role in galaxy evolution. Observations are now starting to confirm that outflows can undergo catastrophic cooling, sup pressing adiabatic superwinds. Here we present a suite of one-dimensional, hydrodynamic simulations that study the ionization structure of these outflows and the resulting line emission generated by the cooling gas. We use the non-equilibrium atomic chemistry package within MAIHEM, our modified version of FLASH, which evolves the ionization state of the gas and computes the total cooling rate on an ion-by-ion basis. We find that catastrophically cooling models produce strong nebular line emission compared to adiabatic outflows. We also show that such models exhibit non-equilibrium conditions, thereby generating more highly ionized states than equivalent equilibrium models. When including photoionization from the parent SSC, catastrophically cooling models show strong C IV {lambda}1549 and O VI {lambda}1037 emission. For density bounded photoionization, He II {lambda}1640, {lambda}4686, C III] {lambda}1908, Si IV {lambda}1206, and Si III {lambda}1400 are also strongly enhanced. These lines are seen in extreme starbursts where catastrophic cooling is likely to occur, suggesting that they may serve as diagnostics of such conditions. The higher ionization generated by these flows may help to explain line emission that cannot be attributed to SSC photoionization alone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا