ترغب بنشر مسار تعليمي؟ اضغط هنا

Boundary field induced first-order transition in the 2D Ising model: numerical study

223   0   0.0 ( 0 )
 نشر من قبل Elmar Bittner
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent paper, Clusel and Fortin [J. Phys. A.: Math. Gen. 39 (2006) 995] presented an analytical study of a first-order transition induced by an inhomogeneous boundary magnetic field in the two-dimensional Ising model. They identified the transition that separates the regime where the interface is localized near the boundary from the one where it is propagating inside the bulk. Inspired by these results, we measured the interface tension by using multimagnetic simulations combined with parallel tempering to determine the phase transition and the location of the interface. Our results are in very good agreement with the theoretical predictions. Furthermore, we studied the spin-spin correlation function for which no analytical results are available.



قيم البحث

اقرأ أيضاً

Two numerical strategies based on the Wang-Landau and Lee entropic sampling schemes are implemented to investigate the first-order transition features of the 3D bimodal ($pm h$) random-field Ising model at the strong disorder regime. We consider simp le cubic lattices with linear sizes in the range $L=4-32$ and simulate the system for two values of the disorder strength: $h=2$ and $h=2.25$. The nature of the transition is elucidated by applying the Lee-Kosterlitz free-energy barrier method. Our results indicate that, despite the strong first-order-like characteristics, the transition remains continuous, in disagreement with the early mean-field theory prediction of a tricritical point at high values of the random-field.
Using large-scale numerical simulations we studied the kinetics of the 2d q-Potts model for q > 4 after a shallow subcritical quench from a high-temperature homogeneous configuration. This protocol drives the system across a first-order phase transit ion. The initial state is metastable after the quench and, for final temperatures close to the critical one, the system escapes from it via a multi-nucleation process. The ensuing relaxation towards equilibrium proceeds through coarsening with competition between the equivalent ground states. This process has been analyzed for different choices of the parameters such as the number of states and the final quench temperature.
We implement a new and accurate numerical entropic scheme to investigate the first-order transition features of the triangular Ising model with nearest-neighbor ($J_{nn}$) and next-nearest-neighbor ($J_{nnn}$) antiferromagnetic interactions in ratio $R=J_{nn}/J_{nnn}=1$. Important aspects of the existing theories of first-order transitions are briefly reviewed, tested on this model, and compared with previous work on the Potts model. Using lattices with linear sizes $L=30,40,...,100,120,140,160,200,240,360$ and 480 we estimate the thermal characteristics of the present weak first-order transition. Our results improve the original estimates of Rastelli et al. and verify all the generally accepted predictions of the finite-size scaling theory of first-order transitions, including transition point shifts, thermal, and magnetic anomalies. However, two of our findings are not compatible with current phenomenological expectations. The behavior of transition points, derived from the number-of-phases parameter, is not in accordance with the theoretically conjectured exponentially small shift behavior and the well-known double Gaussian approximation does not correctly describe higher correction terms of the energy cumulants. It is argued that this discrepancy has its origin in the commonly neglected contributions from domain wall corrections.
59 - T. Demaerel , C. Maes 2017
It is well known that particles can get trapped by randomly placed obstacles when they are pushed too much. We present a model where the current in a disordered medium dies at a large external field, but is reborn when the activity is increased. By a ctivity we mean the time-variation of the external driving at a constant time-averaged field. A different interpretation of the resurgence of the current is that the particles are capable of taking an infinite sequence of potential barriers via a mechanism similar to stochastic resonance. We add a discussion regarding the role of shaking in processes of relaxation.
211 - G.M. Buendia , N. Hurtado 2007
We present a numerical study based on Monte Carlo algorithm of the magnetic properties of a mixed Ising ferrimagnetic model on a cubic lattice where spins $sigma =pm 1/2$ and spins $S=0,pm 1$ are in alternating sites on the lattice. We carried out ex act ground state calculations and employ a Monte Carlo simulation to obtain the finite-temperature phase diagram of the model. A compensation point appears when the next-nearest-neighbor interaction between the spins $sigma =pm 1/2$ exceeds a minimum value. We found a strong dependence of the compensation temperature with the interactions in the Hamiltonian, particulary the crystal field and the external field. An applied field can change the range of values of the compensation temperature from zero up to a maximum value that depends on the field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا