ﻻ يوجد ملخص باللغة العربية
We discuss the renormalisation of the initial value problem in quantum field theory using the two-particle irreducible (2PI) effective action formalism. The nonequilibrium dynamics is renormalised by counterterms determined in equilibrium. We emphasize the importance of the appropriate choice of initial conditions and go beyond the Gaussian initial density operator by defining self-consistent initial conditions. We study the corresponding time evolution and present a numerical example which supports the existence of a continuum limit for this type of initial conditions.
The resonant tunneling phenomenon is well understood in quantum mechanics. We argue why a similar phenomenon must be present in quantum field theory. We then use the functional Schrodinger method to show how resonant tunneling through multiple barrie
A free massive scalar field in inhomogeneous random media is investigated. The coefficients of the Klein-Gordon equation are taken to be random functions of the spatial coordinates. The case of an annealed-like disordered medium, modeled by centered
We exactly solve Dyson-Schwinger equations for a massless quartic scalar field theory. n-point functions are computed till n=4 and the exact propagator computed from the two-point function. The spectrum is so obtained, being the same of a harmonic os
We investigate the nature of resonant tunneling in Quantum Field Theory. Following the pioneering work of Banks, Bender and Wu, we describe quantum field theory in terms of infinite dimensional quantum mechanics and utilize the ``Most probable escape
We study a free scalar field $phi$ in a fixed curved background spacetime subject to a higher derivative field equation of the form $F(Box)phi =0$, where $F$ is a polynomial of the form $F(Box)= prod_i (Box-m_i^2)$ and all masses $m_i$ are distinct a