ﻻ يوجد ملخص باللغة العربية
We review the theory for photon-photon scattering in vacuum, and some of the proposals for its experimental search, including the results of our recent works on the subject. We then describe a very simple and sensitive proposal of an experiment and discuss how it can be used at the present (HERCULES) and the future (ELI) ultrahigh power laser facilities either to find the first evidence of photon-photon scattering in vacuum, or to significantly improve the current experimental limits.
In a recent paper, we have shown that the QED nonlinear corrections imply a phase correction to the linear evolution of crossing electromagnetic waves in vacuum. Here, we provide a more complete analysis, including a full numerical solution of the QE
Second-order optical processes lead to a host of applications in classical and quantum optics. With the enhancement of parametric interactions that arise due to light confinement, on-chip implementations promise very-large-scale photonic integration.
Nonlinear optical media that are normally dispersive, support a new type of localized (nondiffractive and nondispersive) wavepackets that are X-shaped in space and time and have slower than exponential decay. High-intensity X-waves, unlike linear one
In spatially structured strong laser fields, quantum electrodynamical vacuum behaves like a nonlinear Kerr medium with modulated third-order susceptibility where new coherent nonlinear effects arise due to modulation. We consider the enhancement of v
The backward Compton scattering is a basic process at future higher energy photon colliders. To obtain a high probability of e->gamma conversion the density of laser photons in the conversion region should be so high that simultaneous interaction of