ﻻ يوجد ملخص باللغة العربية
An index theory for projective families of elliptic pseudodifferential operators is developed when the twisting, i.e. Dixmier-Douady, class is decomposable. One of the features of this special case is that the corresponding Azumaya bundle can be realized in terms of smoothing operators. The topological and the analytic index of a projective family of elliptic operators both take values in the twisted K-theory of the parameterizing space. The main result is the equality of these two notions of index. The twisted Chern character of the index class is then computed by a variant of Chern-Weil theory.
Following [44], we introduce the notion of families of projective operators on fibrations equipped with an Azumaya bundle $mathcal{A}$. We define and compute the index of such families using the cohomological index formula from [7]. More precisely, a
We define and study the index map for families of $G$-transversally elliptic operators and introduce the multiplicity for a given irreducible representation as a virtual bundle over the base of the fibration. We then prove the usual axiomatic propert
We define the Chern character of the index class of a $G$-invariant family of $G$-transversally elliptic operators, see [6]. Next we study the Berline-Vergne formula for families in the elliptic and transversally elliptic case.
We introduce a notion of cobordism of Callias-type operators over complete Riemannian manifolds and prove that the index is preserved by such a cobordism. As an application we prove a gluing formula for Callias-type index. In particular, a usual inde
We introduce a mathematician-friendly formulation of the physicist-friendly derivation of the Atiyah-Patodi-Singer index of our previous paper. Our viewpoint sheds some new light on the interplay among the Atiyah-Patodi-Singer boundary condition, domain-wall fermions, and edge modes.