We analyze the stability of two charged conducting spheres orbiting each other. Due to charge polarization, the electrostatic force between the two spheres deviates significantly from $1/r^2$ as they come close to each other. As a consequence, there exists a critical angular momentum, $L_c$, with a corresponding critical radius $r_c$. For $L > L_c$ two circular orbits are possible: one at $r > r_c$ that is stable and the other at $r < r_c$ that is unstable. This critical behavior is analyzed as a function of the charge and the size ratios of the two spheres.