ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of Zn and Ni substitution on the Cu-spin dynamics and superconductivity in La_2-x_Sr_x_Cu_1-y_(Zn,Ni)_y_O_4_ with x=0.15-0.20 studied by the muon spin relaxation and magnetic susceptibility

394   0   0.0 ( 0 )
 نشر من قبل Tadashi Adachi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated effects of Zn and Ni on the Cu-spin dynamics and superconductivity from the zero-field muon-spin-relaxation (ZF-muSR) and magnetic-susceptibility, chi, measurements for La_2-x_Sr_x_Cu_1-y_(Zn,Ni)_y_O_4_ with x=0.15-0.20, changing y up to 0.10 in fine step. In the optimally doped x=0.15, it has been concluded that the formation of a magnetic order requires a larger amount of Ni than that of Zn, which is similar to our previous results of x=0.13. From the estimation of volume fractions of superconducting (SC) and magnetic regions, it has been found for x=0.15 that the SC region is in rough correspondence to the region where Cu spins fluctuate fast beyond the muSR frequency window for both Zn- and Ni-substituted samples. According to the stripe model, it follows that, even for x=0.15, the dynamical stripe correlations of spins and holes are pinned and localized around Zn and Ni, leading to the formation of the static stripe order and the suppression of superconductivity. These may indicate an importance of the dynamical stripe in the appearance of the high-T_c_ superconductivity in the hole-doped cuprates. In the overdoped regime of x=0.18 and 0.20, on the other hand, the SC region seems to be in rough correspondence to the region where Cu spins fluctuate fast beyond the muSR frequency window, though it appears that the Cu-spin dynamics and superconductivity are affected by the phase separation into SC and normal-state regions.



قيم البحث

اقرأ أيضاً

317 - Risdiana , T. Adachi , N. Oki 2007
Muon-spin-relaxation measurements have been performed for the partially Zn-substituted La_2-x_Sr_x_Cu_1-y_Zn_y_O_4_ with y=0-0.10 in the overdoped regime up to x=0.30. In the 3 % Zn-substituted samples up to x=0.27, exponential-like depolarization of muon spins has been observed at low temperatures, indicating Zn-induced slowing-down of the Cu-spin fluctuations. The depolarization rate decreases with increasing x and almost no fast depolarization of muon spins has been observed for x=0.30 where superconductivity disappears. The present results suggest that the dynamical stripe correlations exist in the whole superconducting regime of La_2-x_Sr_x_CuO_4_ and that there is no quantum critical point at x~0.19.
70 - M. Kofu , H. Kimura , K. Hirota 2004
Impurity effects of Zn and Ni on the low-energy spin excitations were systematically studied in optimally doped La1.85Sr0.15Cu1-yAyO4 (A=Zn, Ni) by neutron scattering. Impurity-free La1.85Sr0.15CuO4 shows a spin gap of 4meV below Tc in the antiferrom agnetic(AF) incommensurate spin excitation. In Zn:y=0.004, the spin excitation shows a spin gap of 3meV below Tc. In Zn:y=0.008 and Zn:y=0.011, however, the magnetic signals at 3meV decrease below Tc and increase again at lower temperature, indicating an in-gap state. In Zn:y=0.017, the low-energy spin state remains unchanged with decreasing temperature, and elastic magnetic peaks appear below 20K then exponentially increase. As for Ni:y=0.009 and Ni:y=0.018, the low-energy excitations below 3meV and 2meV disappear below Tc. The temperature dependence at 3meV, however, shows no upturn in constrast with Zn:y=0.008 and Zn:y=0.011, indicating the absence of in-gap state. In Ni:y=0.029, the magnetic signals were observed also at 0meV. Thus the spin gap closes with increasing Ni. Furthermore, as omega increases, the magnetic peak width broadens and the peak position, i.e. incommensurability, shifts toward the magnetic zone center (pi pi). We interpret the impurity effects as follows: Zn locally makes a non-superconducting island exhibiting the in-gap state in the superconducting sea with the spin gap. Zn reduces the superconducting volume fraction, thus suppressing Tc. On the other hand, Ni primarily affects the superconducting sea, and the spin excitations become more dispersive and broaden with increasing energy, which is recognized as a consequence of the reduction of energy scale of spin excitations. We believe that the reduction of energy scale is relevant to the suppression of Tc.
78 - T. Machi , I. Kato , R. Hareyama 2003
The effects of nonmagnetic Zn and magnetic Ni substitution for Cu site on magnetism are studied by measurements of uniform magnetic susceptibility for lightly doped La_{2-x}Sr_xCu_{1-z}M_zO_4 (M=Zn or Ni) polycrystalline samples. For the parent x=0, Zn doping suppresses the N{e}el temperature T_N whereas Ni doping hardly changes T_N up to z=0.3. For the lightly doped samples with T_N~0, the Ni doping recovers T_N. For the superconducting samples, the Ni doping induces the superconductivity-to-antiferromagnetic transition (or crossover). All the heavily Ni doped samples indicate a spin glass behavior at ~15 K.
The magnetic response of CaK(Fe$_{0.949}$Ni$_{0.051}$)$_4$As$_4$ was investigated by means of the muon-spin rotation/relaxation. The long-range commensurate magnetic order sets in below the N{e}el temperature $T_{rm N}= 50.0(5)$~K. The density-functi onal theory calculations have identified three possible muon stopping sites. The experimental data were found to be consistent with only one type of magnetic structure, namely, the long-range magnetic spin-vortex-crystal order with the hedgehog motif within the $ab-$plane and the antiferromagnetic stacking along the $c-$direction. The value of the ordered magnetic moment at $Tapprox3$ K was estimated to be $m_{rm Fe}=0.38(11)$ $mu_{rm B}$ ($mu_{rm B}$ is the Bohr magneton). A microscopic coexistence of magnetic and superconducting phases accompanied by a reduction of the magnetic order parameter below the superconducting transition temperature $T_{rm c}simeq 9$ K is observed. Comparison with 11, 122, and 1144 families of Fe-based pnictides points to existence of correlation between the reduction of the magnetic order parameter at $Trightarrow 0$ and the ratio of the transition temperatures $T_{rm c}/T_{rm N}$. Such correlations were found to be described by Machidas model for coexistence of itinerant spin-density wave magnetism and superconductivity [Machida, J. Phys. Soc. Jpn. 50, 2195 (1981) and Budko et al., Phys. Rev. B 98, 144520 (2018)].
Single crystals of the Ni-doped FeAs-based superconductor SrFe2-xNixAs2 were grown using a self-flux solution method and characterized via x-ray measurements and low temperature transport, magnetization, and specific heat studies. A doping phase diag ram has been established where the antiferromagnetic order associated with the magnetostructural transition of the parent compound SrFe2As2 is gradually suppressed with increasing Ni concentration, giving way to bulk-phase superconductivity with a maximum transition temperature of 9.8 K. The superconducting phase exists through a finite range of Ni concentrations centered at x=0.15, with full diamagnetic screening observed over a narrow range of x coinciding with a sharpening of the superconducting transition and an absence of magnetic order. An enhancement of bulk superconducting transition temperatures of up to 20% was found to occur upon high-temperature annealing of samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا