ترغب بنشر مسار تعليمي؟ اضغط هنا

Nulling interferometry: performance comparison between space and ground-based sites for exozodiacal disc detection

288   0   0.0 ( 0 )
 نشر من قبل Denis Defr\\`ere
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Characterising the circumstellar dust around nearby main sequence stars is a necessary step in understanding the planetary formation process and is crucial for future life-finding space missions such as ESAs Darwin or NASAs Terrestrial Planet Finder (TPF). Besides paving the technological way to Darwin/TPF, the space-based infrared interferometers Pegase and FKSI (Fourier-Kelvin Stellar Interferometer) will be valuable scientific precursors in that respect. In this paper, we investigate the performance of Pegase and FKSI for exozodiacal disc detection and compare the results with ground-based nulling interferometers. Besides their main scientific goal (characterising hot giant extrasolar planets), Pegase and FKSI are very efficient in assessing within a few minutes the level of circumstellar dust in the habitable zone around nearby main sequence stars. They are capable of detecting exozodiacal discs respectively 5 and 1 time as dense as the solar zodiacal cloud and they outperform any ground-based instrument. Unlike Pegase, FKSI can achieve this sensitivity for most targets of the Darwin/TPF catalogue thanks to an appropriate combination of baseline length and observing wavelength. The sensitivity of Pegase could, however, be significantly boosted by considering a shorter interferometric baseline length. These space-based interferometers would be complementary to Antarctica-based instruments in terms of sky coverage and would be ideal instruments for preparing future life-finding space missions.



قيم البحث

اقرأ أيضاً

Detecting the presence of circumstellar dust around nearby solar-type main sequence stars is an important pre-requisite for the design of future life-finding space missions such as ESAs Darwin or NASAs Terrestrial Planet Finder (TPF). The high Antarc tic plateau may provide appropriate conditions to perform such a survey from the ground. We investigate the performance of a nulling interferometer optimised for the detection of exozodiacal discs at Dome C, on the high Antarctic plateau, and compare it to the expected performance of similar instruments at temperate sites. Based on the currently available measurements of the turbulence characteristics at Dome C, we adapt the GENIEsim software (Absil et al. 2006, A&A 448) to simulate the performance of a nulling interferometer on the high Antarctic plateau. To feed a realistic instrumental configuration into the simulator, we propose a conceptual design for ALADDIN, the Antarctic L-band Astrophysics Discovery Demonstrator for Interferometric Nulling. We assume that this instrument can be placed above the 30-m high boundary layer, where most of the atmospheric turbulence originates. We show that an optimised nulling interferometer operating on a pair of 1-m class telescopes located 30 m above the ground could achieve a better sensitivity than a similar instrument working with two 8-m class telescopes at a temperate site such as Cerro Paranal. The detection of circumstellar discs about 20 times as dense as our local zodiacal cloud seems within reach for typical Darwin/TPF targets in a integration time of a few hours. Moreover, the exceptional turbulence conditions significantly relax the requirements on real-time control loops, which has favourable consequences on the feasibility of the nulling instrument.
To detect Earth-like planets in the visible with a coronagraphic telescope, two major noise sources have to be overcome: the photon noise of the diffracted star light, and the speckle noise due to the star light scattered by instrumental defects. Cor onagraphs tackle only the photon noise contribution. In order to decrease the speckle noise below the planet level, an active control of the wave front is required. We have developed analytical methods to measure and correct the speckle noise behind a coronagraph with a deformable mirror. In this paper, we summarize these methods, present numerical simulations, and discuss preliminary experimental results obtained with the High-Contrast Imaging Testbed at NASAs Jet Propulsion Laboratory.
We compare photospheric line-of-sight magnetograms from the Synoptic Long-term Investigations of the Sun (SOLIS) vector spectromagnetograph (VSM) instrument with observations from the 150-foot Solar Tower at Mt. Wilson (MWO), Helioseismic and Magneti c Imager (HMI) on Solar Dynamics Observatory (SDO), and Michelson Doppler Imager (MDI) on Solar and Heliospheric Observatory (SOHO). We find very good agreement between VSM and the other data sources for both disk-averaged flux densities and pixel-by-pixel measurements. We show that the VSM mean flux density time series is of consistently high signal-to-noise with no significant zero-offsets. We discuss in detail some of the factors -spatial resolution, flux dependence and position on the solar disk- affecting the determination of scaling between VSM and SOHO/MDI or SDO/HMI magnetograms. The VSM flux densities agree well with spatially smoothed data from MDI and HMI, although the scaling factors show clear dependence on flux density. The factor to convert VSM to HMI increases with increasing flux density (from $approx$1 to $approx$1.5). The nonlinearity is smaller for the VSM vs. ~SOHO/MDI scaling factor (from $approx$1 to $approx$1.2).
64 - Pascal Borde 2005
Following the tracks of Malbet, Yu, & Shao (1995} on dark hole algorithms, we present analytical methods to measure and correct the speckle noise behind an ideal coronagraph. We show that, in a low aberration regime, wavefront sensing can be accompli shed with only three images, the next image being fully corrected (no iterative process needed). The only hardware required is the coronagraph deformable mirror and an imaging detector in the focal plane, thus there are no non-common path errors to correct. Our first method, speckle field nulling, is a fast FFT-based algorithm requiring the deformable mirror influence functions to have identical shapes. Our second method, speckle energy minimization is more general and based on matrix inversion. Numerical simulations show that these methods can improve the contrast by several orders of magnitude.
Nulling interferometry aims to detect faint objects close to bright stars. Its principle is to produce a destructive interference along the line-of-sight so that the stellar flux is rejected, while the flux of the off-axis source can be transmitted. In practice, various instrumental perturbations can degrade the nulling performance. Any imperfection in phase, amplitude, or polarization produces a spurious flux that leaks to the interferometer output and corrupts the transmitted off-axis flux. One of these instrumental pertubations is the crosstalk phenomenon, which occurs because of multiple parasitic reflections inside transmitting optics, and/or diffraction effects related to beam propagation along finite size optics. It can include a crosstalk of a beam with itself, and a mutual crosstalk between different beams. This can create a parasitic interference pattern, which degrades the intrinsic transmission map - or intensity response - of the interferometer. In this context, we describe how this instrumental effect impairs the performance of a Bracewell interferometer. A simple formalism is developed to derive the corresponding modified intensity response of the interferometer, as a function of the two parameters of interest: the crosstalk level (or contamination rate) and the phase shift between the primary and secondary - parasitic - beams. We then apply our mathematical approach to a few scientific cases, both analytically and using the GENIEsim simulation software, adapted to handle coherent crosstalk. Our results show that a coherent crosstalk level of about 1% implies a 20% drop of the SNR at most. Careful attention should thus be paid to reduce the crosstalk level inside an interferometric instrument and ensure an instrumental stability that provides the necessary sensitivity through calibration procedures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا