ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Resolution Observations of Molecular Lines toward the Hot Core G28.20-0.04N

124   0   0.0 ( 0 )
 نشر من قبل ShengLi Qin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results from arcsecond resolution observations of various line transitions at 1.3 mm toward hypercompact HII region G28.20-0.04N. With the SMA data, we have detected and mapped the transitions in the CH$_{3}$CN, CO, $^{13}$CO, SO$_{2}$, OCS, and CH$_{3}$OH molecular lines as well as the radio recombination line H30$alpha$. The observations and analysis indicate a hot core associated with G28.20-0.04N. The outflow and possible rotation are detected in this region.



قيم البحث

اقرأ أيضاً

110 - M. Sewilo 2008
High resolution (0.15) Very Large Array observations of 7 mm continuum and H53a line emission toward the hypercompact H II region G28.20-0.04N reveal the presence of large-scale ordered motions. We find a velocity gradient of 1000 km/s/pc along the m inor axis of the continuum source. Lower resolution (1.0-2.3) radio recombination line observations indicate a systematic increase of line width from H30alpha to H92alpha. Under the assumption that the H30alpha line does not suffer significant pressure broadening, we have deconvolved the contributions of statistical broadening (thermal, turbulent, and pressure) from large-scale motions. The pressure broadening of the H53alpha, H76alpha, and H92alpha lines implies an electron density of 6.9E+06, 8.5E+05, and 2.8E+05 cm^(-3), respectively.
Recent observations have revealed that most proto-planetary discs show a pattern of bright rings and dark gaps. However, most of the high-resolution observations have focused only on the continuum emission. In this Paper we present high-resolution AL MA band 7 (0.89mm) observations of the disc around the star CI Tau in the $^{12}$CO & $^{13}$CO $J=3$-2 and CS $J=7$-6 emission lines. Our recent work demonstrated that the disc around CI Tau contains three gaps and rings in continuum emission, and we look for their counterparts in the gas emission. While we find no counterpart of the third gap and ring in $^{13}$CO, the disc has a gap in emission at the location of the second continuum ring (rather than gap). We demonstrate that this is mostly an artefact of the continuum subtraction, although a residual gap still remains after accounting for this effect. Through radiative transfer modelling we propose this is due to the inner disc shadowing the outer parts of the disc and making them colder. This raises a note of caution in mapping high-resolution gas emission lines observations to the gas surface density - while possible, this needs to be done carefully. In contrast to $^{13}$CO, CS emission shows instead a ring morphology, most likely due to chemical effects. Finally, we note that $^{12}$CO is heavily absorbed by the foreground preventing any morphological study using this line.
55 - B. Mookerjea 2007
(abridged) We present high angular resolution (~ 1) multi-tracer spectral line observations toward the hot core associated with G34.26+0.15 between 87--109 GHz. We have mapped emission from (i) complex nitrogen- and oxygen-rich molecules like CH3OH, HC3N, C2H5CN, NH2CHO, CH3OCH3, HCOOCH3; (ii) sulfur-bearing molecules like OCS, SO and SO2; and (iii) the recombination line H53 beta. The high angular resolution enables us to directly probe the hot molecular core associated with G34.26+0.15 at spatial scales of 0.018 pc. At this resolution we find no evidence for the hot core being internally heated. The continuum peak detected at lambda=2.8 mm is consistent with the free-free emission from component C of the ultracompact H II region. Velocity structure and morphology outlined by the different tracers suggest that the hot core is primarily energized by component C. Emission from the N- and O-bearing molecules peak at different positions within the innermost regions of the core; none is coincident with the continuum peak. Based on the brightness temperatures of optically thick lines in our sample, we estimate the kinetic temperature of the inner regions of the HMC to be 160+-30 K. Comparison of the observed abundances of the different species in G34.26+0.15 with existing models does not produce a consistent picture.
We present Submillimeter Array (SMA) observations toward the high-mass star-forming region IRAS 18566+0408. Observations at 1.3 mm continuum and in several molecular line transitions were performed in the compact (2.4 angular resolution) and very-ext ended (~0.4 angular resolution) configurations. The continuum emission from the compact configuration shows a dust core of 150 Msun, while the very-extended configuration reveals a dense (2.6 x 10^7 cm^-3) and compact (~4,000 AU) condensation of 8 Msun. We detect 31 molecular transitions from 14 species including CO isotopologues, SO, CH3OH, OCS, and CH3CN. Using the different k-ladders of the CH3CN line, we derive a rotational temperature at the location of the continuum peak of 240 K. The 12CO(2-1), 13CO(2-1), and SO(6_5-5_4) lines reveal a molecular outflow at PA ~135^o centered at the continuum peak. The extended 12CO(2-1) emission has been recovered with the IRAM 30 m telescope observations. Using the combined data set, we derive an outflow mass of 16.8 Msun. The chemically rich spectrum and the high rotational temperature confirm that IRAS 18566+0408 is harboring a hot molecular core. We find no clear velocity gradient that could suggest the presence of a rotational disk-like structure, even at the high resolution observations obtained with the very-extended configuration.
We present molecular line observations of 13CO and C18O J=3-2, CN N = 3 - 2, and CS J=7-6 lines in the protoplanetary disk around TW Hya at a high spatial resolution of ~9 au (angular resolution of 0.15), using the Atacama Large Millimeter/Submillime ter Array. A possible gas gap is found in the deprojected radial intensity profile of the integrated C18O line around a disk radius of ~58 au, slightly beyond the location of the au-scale dust clump at ~52 au, which resembles predictions from hydrodynamic simulations of planet-disk interaction. In addition, we construct models for the physical and chemical structure of the TW Hya disk, taking account of the dust surface density profile obtained from high spatial resolution dust continuum observations. As a result, the observed flat radial profile of the CN line intensities is reproduced due to a high dust-to-gas surface density ratio inside ~20 au. Meanwhile, the CO isotopologue line intensities trace high temperature gas and increase rapidly inside a disk radius of ~30 au. A model with either CO gas depletion or depletion of gas-phase oxygen elemental abundance is required to reproduce the relatively weak CO isotopologue line intensities observed in the outer disk, consistent with previous atomic and molecular line observations towards the TW Hya disk. {Further observations of line emission of carbon-bearing species, such as atomic carbon and HCN, with high spatial resolution would help to better constrain the distribution of elemental carbon abundance in the disk gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا