ﻻ يوجد ملخص باللغة العربية
We derive a Hamiltonian for a two-leg ladder which includes an arbitrary number of charge and spin interactions. To illustrate this Hamiltonian we consider two examples and use a renormalization group technique to evaluate the ground state phases. The first example is a two-leg ladder with zigzagged legs. We find that increasing the number of interactions in such a two-leg ladder may result in a richer phase diagram, particularly at half-filling where a few exotic phases are possible when the number of interactions are large and the angle of the zigzag is small. In the second example we determine under which conditions a two-leg ladder at quarter-filling is able to support a Tomanaga-Luttinger liquid phase. We show that this is only possible when the spin interactions across the rungs are ferromagnetic. In both examples we focus on lithium purple bronze, a two-leg ladder with zigzagged legs which is though to support a Tomanaga-Luttinger liquid phase.
We consider the effects of Umklapp processes in doped two-leg fermionic ladders. These may emerge either at special band fillings or as a result of the presence of external periodic potentials. We show that such Umklapp processes can lead to profound
Motivated by the recent experiment on $rm{K_2Cu_3Oleft(SO_4right)_3}$, an edge-shared tetrahedral spin-cluster compound [M. Fujihala textit{et al.}, Phys. Rev. Lett. textbf{120}, 077201 (2018)], we investigate two-leg spin-cluster ladders with the pl
In previous studies, we proposed a scaling ansatz for electron-electron interactions under renormalization group transformation. With the inclusion of phonon-mediated interactions, we show that the scaling ansatz, characterized by the divergent logar
We study the dynamical spin response of doped two-leg Hubbard-like ladders in the framework of a low-energy effective field theory description given by the SO(6) Gross Neveu model. Using the integrability of the SO(6) Gross-Neveu model, we derive the
Magnetic excitations in two-leg S=1/2 ladders are studied both experimentally and theoretically. Experimentally, we report on the reflectivity, the transmission and the optical conductivity sigma(omega) of undoped La_x Ca_14-x Cu_24 O_41 for x=4, 5,