ﻻ يوجد ملخص باللغة العربية
Let $(A,m)$ be a Noetherian local ring, let $M$ be a finitely generated CM $A$-module of dimension $r geq 2$ and let $I$ be an ideal of definition for $M$. Set $L^I(M) = bigoplus_{ngeq 0}M/I^{n+1}M$. In part one of this paper we showed that $L^I(M)$ is a module over $R$, the Rees algebra of $I$ and we gave many applications of $L^I(M)$ to study the associated graded module, $G_I(M)$. In this paper we give many further applications of our technique; most notable is a reformulation of a classical result due to Narita in terms of the Ratliff-Rush filtration. This reformulation can be extended to all dimensions $geq 2$.
Let $A$ be a commutative Noetherian ring containing a field $K$ of characteristic zero and let $R= A[X_1, ldots, X_m]$. Consider $R$ as standard graded with $deg A=0$ and $deg X_i=1$ for all $i$. We present a few results about the behavior of the gra
Let $(A,mathfrak{m})$ be a hypersurface ring with dimension $d$, and $M$ a MCM $A-$module with reduction no.2 and $mu(M)=2$ or $3$ then we have proved that depth$G(M)geq d-mu(M)+1$. If $e(A)=3$ and $mu(M)=4$ then in this case we have proved that dept
Let $R=K[X_1,ldots, X_n]$ where $K$ is a field of characteristic zero, and let $A_n(K)$ be the $n^{th}$ Weyl algebra over $K$. We give standard grading on $R$ and $A_n(K)$. Let $I$, $J$ be homogeneous ideals of $R$. Let $M = H^i_I(R)$ and $N = H^j_J(
Let $A$ be a regular ring containing a field $K$ of characteristic zero and let $R = A[X_1,ldots, X_m]$. Consider $R$ as standard graded with $deg A = 0$ and $deg X_i = 1$ for all $i$. Let $G$ be a finite subgroup of $GL_m(A)$. Let $G$ act linearly o
Let $(A,mathfrak{m})$ be a Henselian Cohen-Macaulay local ring and let CM(A) be the category of maximal Cohen-Macaulay $A$-modules. We construct $T colon CM(A)times CM(A) rightarrow mod(A)$, a subfunctor of $Ext^1_A(-, -)$ and use it to study propert