ﻻ يوجد ملخص باللغة العربية
This study shows that isoscaling, usually studied in nuclear reactions, is a phenomenon common to all cases of fair sampling. Exact expressions for the yield ratio $R_{21}$ and approximate expressions for the isoscaling parameters $alpha$ and $beta$ are obtained and compared to experimental results. It is concluded that nuclear isoscaling is bound to contain a component due to sampling and, thus, a words of caution is issued to those interested in extracting information about the nuclear equation of state from isoscaling.
The properties of the nuclear isoscaling at finite temperature are investigated and the extent to which its parameter $alpha$ holds information on the symmetry energy is examined. We show that, although finite temperature effects invalidate the analy
Isoscaling and its relation to the symmetry energy in the fragmentation of excited residues produced at relativistic energies were studied in two experiments conducted at the GSI laboratory. The INDRA multidetector has been used to detect and identif
The order-by-order renormalization of the self-consistent mean-field potential in many-body perturbation theory for normal Fermi systems is investigated in detail. Building on previous work mainly by Balian and de Dominicis, as a key result we derive
The isospin effect and isoscaling behavior in projectile fragmentation have been systematically investigated by a modified statistical abrasion-ablation (SAA) model. The normalized peak differences and reduced isoscaling parameters are found to decre
Generalized isoscaling relationships are proposed that may permit one to relate the isotopic distributions of systems that may not be at the same temperature. The proposed relationships are applied to multifragmentation excitation functions for central Kr+Nb and Ar+Sc collisions.